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Synchronized Chaos and Spatiotemporal Chaos in Arrays of Coupled Lasers
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A subset of lasers in an array of coupled lasers can produce identical, synchronized, chaotic signals.
Beyond a critical coupling strength, synchronization fails, and spatiotemporal chaos results. The transi-
tion to spatiotemporal chaos is signaled by spatial symmetry breaking. Quantitative measures of the
transition from synchronized chaos are provided by Lyapunov exponents, sub-Lyapunov exponents, and
the mutual information content.

PACS numbers: 42.50.Tj, 05.45.+b

In this paper we consider the spontaneous emergence
of synchronized chaotic signals in a spatially distributed
nonlinear system. The model system described here is a
semiconductor laser array which serves as a paradigm
for the spatiotemporal behavior of coupled nonlinear os-
cillators. We find that there is a range of coupling
strength for which synchronized chaos exists. Outside
that range, synchronization breaks down and the system
enters a regime of spatiotemporal chaos or turbulence.
The loss of synchronization is accompanied by spatial
symmetry breaking. We show that the mutual informa-
tion between two elements of the array is a useful mea-
sure of the transition from synchronized chaos to spa-
tiotemporal chaos.

The notion of synchronized chaos may sound, at first,
like an oxymoron. Chaotic motion, with its inherent
unpredictability and the exponential divergence of near-

by trajectories, would seem to preclude the practical
realization of identical, synchronized, chaotic signals. In

a recent paper, however, Pecora and Carroll have shown

that certain subsystems of nonlinear, chaotic systems can
be made to synchronize by linking them with common
signals. ' The synchronization results from the influence
of a driving (or master) system on a response (or slave)
system while the driving system remains unperturbed.
The systems considered in Ref. 1 were low-dimensional
dynamical systems such as the Lorenz and Rossler equa-
tions where spatial effects are irrelevant. On the other
hand, some of the most interesting phenomena, such as
pattern formation and turbulence, that occur in extended
systems involve both the temporal and spatial degrees of
freedom. While it is true that a complete description of
such phenomena would involve continuous-time, continu-
ous-space models (i.e., partial differential equations), it
is remarkable that simple discrete-space models such as
cellular automata and lattice dynamical systems exhibit
the complicated patterns and spatiotemporal chaos ex-
pected of "real" systems. An equally amazing dis-
covery is that some partial diAerential equation models
for spatiotemporal complexity are strictly equivalent to a
set of coupled ordinary differential equations correspond-
ing to a finite but high-dimensional system. It is clear
that the study of real spatially extended systems that are

accurately described by a finite set of coupled ordinary
diAerential equations will provide insight into the nature
of spatiotemporal chaos. This is the motivation for the
present work.

Our model system is an array of waveguide lasers cou-
pled by means of their overlapping evanescent fields. In
the absence of coupling, each laser operates in a single
longitudinal and transverse mode, assumed to be the
same for all the lasers. The electric field of the guided
mode in the jth laser is taken as Et(t)e '"', where the
complex amplitude Et(t) varies slowly compared to the
optical frequency coo. Assuming nearest-neighbor cou-
pling, the evolution of the mode amplitude (E, ) and the
population (N, ) in the jth laser is described by the equa-
tions

1
(1 i a)E, —

+i K (E, + i +E) )), -
dN) N) —G(N )IE I,
dt J J (2)

where G is the gain, r~ (- I ps) is the photon lifetime, r,
(-2 ns) is the lifetime of the active population, P is the
pump rate, and K is the coupling strength between adja-
cent lasers. The parameter a is known as the linewidth
enhancement factor in semiconductor lasers and is a
measure of the carrier-density-dependent refractive in-
dex. For operation not too far from the lasing threshold
of the uncoupled lasers, the gain may be expressed as
G (Nt ) =G (N, h) +g(N~ —N, h), where N, h is the carrier
density at threshold, G(N, h) =I/r~, and g =BG/dN is

the differential gain. It should be noted that if the popu-
lation Nt is adiabatically eliminated, Eq. (1) represents a
set of coupled van der Pol oscillators and is also identical
to the discrete Ginzburg-Landau equation which has
been used often as a model for spatiotemporal complexi-

6

It is convenient to transform Eqs. (1) and (2) into di-
mension less form for the normalized magnitude (Xj )
and phase (p, ) of the electric field, and the normalized
excess carrier density Z, in the jth laser. These equa-
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tions are'
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(s)

with LO=L&+] =0. Here the overdots signify deriva-
tives with respect to a reduced time r/rz and we define

the following variables and parameters:

&~ =( —, gr, ) '
~E) ~, ZJ = —,

'
gNIhrq(N~/NIh —1),

p = —, gN„r„(P/P„—1), g=ICr, , T=r, /r, .

Equations (3)-(5) represent an oscillator assembly
which in the absence of coupling (rl =0) would evolve to-

ward a steady state with Z, =0, X, =Jp, and arbitrary
phases p, . For nonzero coupling, the array of lasers can
organize itself into a macroscopically coherent structure
with weil-defined phase relationships between the oscilla-
tors.

The self-organizing principle underlying the collective
behavior of coupled oscillators is that of synchronization
or mutual entrainment. For the laser array in this dis-

cussion, there are two levels of synchronization involved.

The first represents a quiescent state in which the ampli-
tudes L, and carrier densities Zj are constant in time
while the phases p, evolve linearly in time at the same
rate (possibly zero) for all the lasers. For weakly cou-

pled lasers (rl ( 10 '), the stable phase-locked or quies-
cent state is one in which the amplitude distribution
across the array is nearly uniform. If this were not the
case, local regions of high field would result (through the
a parameter) in detunings between the lasers thereby
destabilizing phase locking. This uniform phase-locked
state, however, is not always stable. Above a critical
coupling strength the quiescent state loses stability

through a supercritical Hopf bifurcation. '
Physically,

the delayed response of the carriers leads to phase lags
between the oscillators and destroys phase locking. The
dynamical variables —amplitudes, phases, and carrier
densities —all pulsate in time. The pulsations that occur
in diA'erent elements of the array may be in time step
with each other, and this represents the second level of
synchronization.

To elucidate the notion of synchronized chaos, consid-
er the case of three identical coupled lasers. The pres-
ence of a spatial grid imposes a spatial symmetry and
makes it possible to determine a priori which elements in

the array are likely to synchronize. In the stable phase-
locked state, symmetry dictates that L] =L3. For this
particular case, stable quiescent states exist for

g (10 . As g is increased beyond this value, the
branch of phase-locked solutions loses stability in favor
of a self-pulsing solution. The spatial symmetry, howev-

er, is maintained in the sense that the pulsations in L]
and X3 are synchronous. As g is increased further, a se-

quence of period-doubling bifurcations occurs at
g=10 '' ", 10 ' ', 10 -', etc. Throughout this bi-
furcation sequence, lasers 1 and 3 remain synchronized
with each other, i.e. , XI =X3 I(I ItI3 ZI =Z3.

For g =10 '', the temporal evolution of the output of
each laser in the array is chaotic. The computed
Lyapunov spectrum is (+6.1, 0, 0, —2. 1, —2.3, —2.4,
—3.8, —4.0, —13.0) x10 . These Lyapunov exponents
are the eigenvalues of the Jacobian of the evolution
equations averaged along an orbit of the system and
hence provide a measure of the average exponential
divergence of nearby orbits. The presence of a positive
Lyapunov exponent confirms that the evolution is indeed

chaotic. It is remarkable, however, that the temporal
evolution of the output intensities in lasers 1 and 3 are
identical, as shown in Fig. 1(a). This is the regime of
synchronized chaos as can be seen [Fig. 1(b)] in the pro-
jection of the flow onto the L]-L3 plane. In the L]-L.
plane, it is clear that the motion is along a strange at-
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I. IG. 1. Synchronized chaos for g=10 ''. (a)
Ll -I& plane; (c) projection onto the Li-L. plane.
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tractor [Fig. 1(c)]. The regime of synchronized chaos
thus corresponds to spatial order and temporal chaos.

Pecora and Carroll' have introduced the notion of
sub-Lyapunov exponents to quantify the ability of chaot-
ic subsystems to synchronize. If the sub-Lyapunov ex-
ponents are all negative, the subsystems will synchronize.
We apply this concept to the mutaul entrainment of
lasers 1 and 3 and find that the sub-Lyapunov exponents
associated with the subspace (X~,p~, Z~) are ( —2. 1,
—2.3, —2.5) x 10 in the region of synchronized chaos.

The presence of spatial symmetry does not guarantee
synchronization of chaotic orbits. When the coupling
strength g is increased to 10,synchronization breaks
down. Figure 2(a) now shows the evolution of X~, X2,
and X3 as a function of time. There is now no apparent
relationship between L~ and L3. The spatial order has
been lost. This spatial symmetry breaking is also evident
in Fig. 2(b) where we show the projection of the flow

onto the L~ -L3 plane. The attractor here is a complicat-
ed tangle. Figure 2(c), the projection in the X~-X:
plane, shows that its structure is much more complex
than in the case of synchronized chaos. This is the re-

gime of spatiotemporal chaos. The Lyapunov spectrum
associated with this evolution is (+30.9, +12.8, +0.4,
0, —0.8, —3.4, —5.7, —17.2, —33.6) &&10 . The sys-

tem is now hyperchaotic, with more than one positive

Lyapunov exponent. The associated sub-Lyapunov ex-
ponents are (+7.3, —2.0, —11.5) &&10 . Since these
sub-Lyapunov exponents are not all negative, synchroni-
zation cannot occur for this chosen value of coupling.

Intuition suggests that the chaos seen in Fig. 2 is

higher dimensional than that of Fig. 1, To quantify this
intuition we calculate the Lyapunov dimension associat-
ed with the attractors shown. The Lyapunov dimension
is a measure of the number of phase-space variables
needed to accurately capture the dynamics. It is defined
as

DI =j+ (k)+l.+ . .
+XJ )/(X, + (),

where the k, are arranged such that k~ ~ k2~ X3, etc. ,
and j is the largest integer such that X

~
+X.

+ . . +k, ~ 0. In the region of synchronized chaos the
Lyapunov dimension is Ol =5.7 which suggests that the
evolution of the system occurs in a space of dimension no
greater than 6. The dynamics of the three-laser system
is then identical to that of two lasers with asymmetrical
coupling. I n the regime of spatiotemporal chaos
(g&10 ) the Lyapunov dimension DI is 8.5. This
implies that the system explores essentially the entire
nine-dimensional phase space available to it.

The transition from synchronized chaos to spatiotem-
poral chaos can be further characterized by means of the
mutual information M,-, , which measures the general
dependence of two variables x and y. The mutual infor-
mation is defined in terms of Shannon entropy in the fol-
lowing manner. " Consider a dynamical variable x(t)
that depends continuously on time t One star. ts by di-
viding the possible range of x into N boxes of size e. The
state x is measured at intervals of time I Let P(x, ). be
the probability that x lies in the ith box. Then the entro-

py of x is defined as

H, = —g P(x, )log P(x, ).
A similar quantity exists for dynamical variable y. The
amount of information (in bits) about x contained in y,
or vice versa, is given by the mutual information

M„.=H, +H, —H,-, ,

where H, , is the joint entropy defined in terms of the
joint probability P(x„y, ) of x lying in the ith box and y
lying the jth box:

."4'

H„= —g P(x„y, )log P(x„y, ).

Mutual information has the convenient property that it
vanishes if x and y are independent and is large if the
two variables are correlated.
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FIG. 2. Spatiotemporal chaos for g =10 '
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the Xl-3'3 plane; (c) projection onto the Xl-A ~ plane. Except for g, the parameter values are the same as in Fig. l.
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FIG. 3. Mutual information vs coupling strength. Solid
curve: Mi3 (mutual information of lasers I and 3). Dashed
curve: Mi ~ (mutual information of lasers 1 and 2).

not quite identical. It occurs over a wide range of initial
conditions and has also been seen in larger oscillator as-
semblies. However, the computation of Lyapunov ex-
ponents and dimensions for the larger arrays is extremely
time consuming and will be reported else~here.

In conclusion, we have demonstrated that synchron-
ized chaotic time series can be generated spontaneously
in a spatially distributed system. The synchronization is

mutual in the sense that the subsystems aAect each other
and one cannot identify a master or slave component.
Synchronization is possible only within a range of cou-

pling strengths. When synchronization breaks down we

observe spatiotemporal chaos. These results may have

relevance in other areas of science where coupled non-

linear oscillators are used to model self-organization and

spatiotemporal complexity.
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Figure 3 shows Mi3 (mutual information between ele-
ments 1 and 3) and Mi. (mutual information between
elements 1 and 2) plotted as a function of rt. For
g(10 ' both Mi3 and Mt. are high, indicating the
strong correlation that exists among all three oscillators
just beyond the first Hopf bifurcation. The sharp drop inI i~ that occurs in the vicinity of logiog=- —3.6 signifies
the period-doubling bifurcations to chaos. There is a re-

gion between log|op—= —3.6 and —3.3 ~here M t is low

but Mi3 remains high. This is the region of synchron-
ized chaos where the system is temporally chaotic but
maintains a high degree of spatial order. The peaks in

M i2 in the vicinity of logiog —= —3.40 and —3.24 identify
periodic windows within the chaotic region. Finally,
beyond logiog=- —3.15 both Mi3 and Mi. are low. In

this region, the system is disordered in both space and
time. Mutual information thus provides a measure of
the qualitative changes in the spatiotemporal dynamics
as a control parameter of the system is varied.

The phenomena discussed here are quite robust. Syn-
chronized chaos persists even when the coupled lasers are
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