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Statistical Thermodynamics of the Cluster Solid-Liquid Transition
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A direct connection between the solid-liquid transition in atomic clusters and the macroscopic phase
transition is established through analysis of the size scaling of the latent heat and transition rounding.
The transition occurs without phase separation, leading to remarkable consequences in caloric experi-
ments. These features are all quantified through the characteristic shape of the classical state density,
computed by a new Monte Carlo method.

PACS numbers: 36.40.+d

The discovery' in computer simulations of a surpris-

ingly distinct transition to liquidlike, dift'usive behavior
in atomic clusters consisting of as few as seven atoms has
attracted substantial interest over the past decade. The
main motivation lies in connecting molecular pictures of
permutations and isomerism to the familiar macroscopic
transition. What is the nature of the small-systems pre-
cursor to the solid-liquid transition, and how will it be
manifested experimentally? Here we take a statistical-
thermodynamic approach to this question. It seems like-

ly that clean calorimetric experiments on size-selected
clusters will soon be achieved using appropriate ther-
mometers and calorimeters. In any case, prior theory
on the cluster solid-liquid transition (CSLT) involves

thermodynamic concepts, such as temperature and en-
semble averages: This includes calculation of -caloric
curves by Monte Carlo (MC) and molecular-dy-
namics methods, analytical models, ' ' and scaling
theory. ' In most cases, a picture in qualitative accord
with the two-state picture' is found: Over a certain
range of temperature or energy, an ensemble of clusters
is a mixture of low-energy (solid) and high-energy
(liquid) forms. ' However, controversial points remain
unresolved: Is the transition well defined in the sense of
having a direct correspondence to the bulk first-order
transition? What is the shape of the caloric curve at
the transition, and how should characteristics ' ' be
defined?

Part of the divergences of view arise from the
differences in the various thermodynamic ensembles
used. For finite-size systems these give inequivalent pre-
dictions, each corresponding to a distinct set of realizable
conditions: (i) When cold clusters from a seeded beam
are irradiated by a laser of given frequency, the energies
of the clusters lie within a narrow range around the pho-
ton energy, gi~ing the microcanonical ensemble. " (ii)
Clusters diluted in a thermalized inert gas or on a sub-
strate correspond to the canonical ensemble. '" (iii) If
the cluster also exchanges atoms with its surrounding va-

por, then the ensemble is grand canonical. '' A related,
but special case is presented by the evaporative ensem-
ble. "

This Letter shows how the solid-liquid transition can
be defined independent of these considerations. The im-

portant quantity for this purpose is the classical state
density A(E), which, once known, leads readily to all

other thermodynamic functions. Even if the actual ener-

gy distribution is non-Boitzmann, Q(E) is relevant in

calculating average properties of the system. Also, cer-
tain spectroscopic measurements may directly access
portions of 0 (E). Furthermore, 0 (E) is rigorously
defined for any system, from N =1 to ~ constituents, so
that it is valid for establishing connections between
molecular and bulk properties. Here A(E) will quantify
the properties characteristic to the CSLT and define its
relation to the bulk transition.

Specifically, we consider clusters of the form Atv,
where 2 is an atom or molecule represented by a pair-
wise interaction potential. The computation of 0 is

based on the following: The distribution of configu-
rational energies F, sampled by the Metropolis Monte
Carlo algorithm is the canonical probability distribution,

p(E„P) = Q,. (E, )e. "/Z(P), at the temperature P =1/
kttT.

-' Therefore the form of A, (E, ) can be extracted
simply by dividing by the Boltzmann factor. ' However,
the range of E, accurately sampled at any given p is

small, and the multiplicative constant Z(p), the
configuration part of the canonical partition function, is

unknown. Our approach is to compute overlapping
histograms p(E, ;p) and p(E, ;p'), p near p', thereby al-

lowing the ratio Z(p)/Z(p') to be precisely evaluated.
Repeating this process for a sequence of p values enables
construction of a single, continuous Q, (E, ) that is

correct to within an unknown multiplicative factor.
(Ferrenberg and Swendsen independently developed a
very similar method, described in detail in Ref. 23; a
comparison is given elsewhere. ) The total-energy
state density 0(E) is obtained by convolution of 0, with
the (analytic) kinetic-energy state density. ' The large
fluctuations present in small systems mean that A(E) is

obtained over the complete energy range, excluding the
transition region, with only 5x10 sweeps total, while
the latter region is sampled with one or two runs of
(1-2)x 10 sweeps each. The thermodynamic functions
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of interest are, for the microcanonical ensemble, entropy,
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Aside from (1), these will be viewed as indicating what
caloric experiments would measure.

The systems consist of N atoms interacting through
the Lennard-Jones potential,

u (r) =4m[(r/rs)" —(r/o) '-'],
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all enclosed within a hard-wall sphere of radius R, for re-
turning a rare evaporated atom to the intact cluster. Re-
sults are independent of the volume, as long as (i) the
temperature is below the spontaneous vaporization
threshold, and (ii) the sphere volume does not compress
the intact cluster, e.g. , if the density N/ V exceeds that of
the bulk liquid at the triple point. [Typical radii are
R =1.57 (N =13), 2.6 (55), and 3.7 (147).] The results,
given in Lennard-Jones reduced units (s= 1, a =1,
ktt =1), are presented for the specific cases N =13, 55,
and 147 (Mackay icosahedra), selected because of their
unique solid forms; other sizes will be presented else-
where.

Figure 1 presents caloric curves [Eqs. (2), (4), and
(5)] computed from zero temperature to near the vapori-
zation onset. Each exhibits three regions: solid region—U increases steadily, leading to constant C, at a value
near equipartition, i.e. , 3N —6; transition region —there
is a single sharp increase in the U slope, and hence a C,
peak; liquid region —the slope of U is again low, and C,
is also nearly constant. The transition is accompanied by
distinct increases in the volume, disorder, and diffusive
behavior. Comparing with prior work on N =13, the C, .

curve agrees quantitatively with that of Refs. 6 and 7.
However, the symmetrical shape of N=55 specific-heat
anomaly contradicts the X transition suggested earlier. '
For N=13, the effect of cavity size and whether the
cluster center of mass is fixed at the cavity center have
been examined to verify the robustness of the results.

Several aspects of the caloric results are in accord with
the picture of rounding of a first order transition bl-

FIC3. 1. The U(T) and C, . (T) curves, Eqs. (4) and (5), for
the (a), (d) %=13, (b), (e) 55, and (c),(f) 147 Lennard-Jones
clusters, as obtained by a series of Metropolis Monte Carlo
samplings and analytical continuations. The dashed curves,
E(T) vs T=(aS/aE) —,are microcanonical results, Eq. (2).

finite size effects -"' The t.ransition region would be-
come ever sharper in the bulk limit, leading to a discon-
tinuity in U and a delta function in C,. , the area of which
is the latent heat of fusion 4U. Inspection of Fig. 1

gives, for N=55, T, =0.30 and A. S/N=1. 0, and for
N =147, T, =0.36 and AS/N=1. 2, compared with the
respective values of 0.67 and 1.7 for the bulk Lennard-
Jones system near the triple point. Within a two-state
model, one can show that the width, or rounding, Ap, of
the transition is given approximately by AUAp=1 or
AT/T, =(AS) ', whic. h is just the formula given by
Imry, ' on the basis of a fluctuation argument, if we fur-
ther allow that the entropy is approximately extensive,
i.e., hS =Ncaa. Both the extensive nature of the latent
heat and entropy and the scaling of the rounding are in

clear accord with this picture, establishing a direct
correspondence of the CLST to the bulk first-order tran-
sition.

Further insight is gained by examination of the form
of n(E), Fig. 2(a). Aside from the logarithmic lowE-
form, it has an almost linear part between the points 2
and B. In classical thermodynamics, a linear region in

the entropy signifies a first-order phase transition, where
the transition temperature is the slope (Ee —Eq)/,
(Stt —S& ). However, one major distinction appears:
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FIG. 2. (a) The density of states O(E) for the N=55 clus-
ter, plotted logarithmically against E [Eq. (I)] over the energy
range indicated in Fi . 1.'g. . The dashed curve is the harmonic
equipartition) approximation valid at low energy, and the
angent line is drawn as discussed in the text. (b) Distribution

of energies at the transition temperature, T, =0.303; see text

The entropy shows a segment of positive curvature be-
tween A and B This lea.ds, through Eq. (2), to the S-
shaped caloric curves (Fig. I). The origin of this effect
is a solid-liquid coexistence far from what is observed in

the infinite system. As we now show, this conclusion
does not depend on the particular ensemble considered.

2(b
T e canonical ensemble is easiest to co d . Fnsi er. 1gure

) presents the specific distribution of energies f(E)
=Q(E)exp( PE), where P—is the slope of the line AB
in Fig. 2(a). This bimodal distribution has a low-energy
maximum corresponding (by continuity) to the solid
state and a higher one corresponding to the liquid state.
The dashed curves of Fig. 2(b) are a fit with a superposi-
tion of two Gaussians, demonstrating that the energy dis-
tribution corresponds to only two states, each with a
finite w1dth from intrinsic fluctuations. Despite an ex-
tensive search, examination of MC "ttrajectories"
confirms this for all the clusters, including % =147: The
configurational energy fluctuates within one of two nar-
row bands, so that the cluster is either all liquid or all
solid, the coexistence of phases being highly improbable.
Instead, coexistence of the two phases must be described
as a special case of dynamic equilibrium:- As the tem-
perature is increased across the transition reg thglon, e
so 1 maximum gradually decreases in favor of the liquid
maximum, and the mean energy goes from that of the
solid to the liquid U over a finite region hT.

030 0.3S 0.40
Kinetic Temperature

0.45

FIG.IG. 3. Microcanonical results for N =147. (Top) Distribu-
tions o kinetic-energy states p(K;E) computed at different
values of F. and reduced by 3N —6. Th bese are obtained from
the exact relation p(K;E) = ti, (E —K)K"
—6. Bottom The mean kinetic temperature plotted as a
function of energy, exhibiting a clear loop behavior, analogous
to that obtained in Fig. I using Eq. (2).

In the microcanonical ensemble, it might seem that a
stable configuration energy intermediate between the
solid and the li ui'q id, and hence phase separation, could
be observed. However, this is not the case, as shown by
the kinetic-energy distributions obtained at fixed E (Fig.
3). In the vicinity of the transition the kinetic-energy

istribution broadens toward lower eower energy. is corre-
sponds to the system "climbing up" thup on t e potential-
energy surface, because of a tremendous increase in the
configurational state density in this region (Fig. 2). In a
calorimetry experiment, the remark blar a e consequence is
that an increase in totah otal energy causes a temperature
reduction. Figure 3 demonstrates the magnitude of this
efrect as the
10% ast e

e mean kinetic energy declines by m th
o as the total energy increases across the transition

region. Such an eflect should be readily observable using
a few-level thermometer diluted in the cluster. '

Contrary to the generally accepted idea, we have
shown that the solid-liquid transition is well defined in

clusters, and thathat it has a unique origin in terms of the
peculiar shape of the density of states as a function of
energy. The transition exhibits proper size scaling to-
ward the bulk first-order transition, in the sense of hav-
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ing an approximately constant latent heat (per atom),
and a width narrowing as W . The main difference
from the bulk transition is the inability of the cluster to
contain both phases at the same time. Evidently, this re-
quires very large clusters of size above an unknown
threshold. Up to now, this could only be deduced for
very small clusters, or assumed a priori in models of un-
certain validity. Our results show that a highly distinct
CSLT exhibiting all characteristics can be anticipated
for clusters having as few as 55 constituent atoms or
molecules. Difterent views of this transition are obtained
through the filter of the various thermodynamic ensem-
bles, each of which may be realized in diAerent experi-
ments.

Finally, Berry and Wales-' have recently formulated a
theory emphasizing the absence of phase separation
within a single cluster. In this picture, the analytically
continued behavior of the low-energy and high-energy
forms, sampled as "fluctuations" here, are supercooled
and superheated phases, and the unstable equilibrium,
i.e., the middle branch of the loop (Fig. 1), is the "spino-
dal. " However, we have no firm evidence that the loop
extrema are actual stability limits.
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