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For a chaotic system, a noisy trajectory diverges rapidly from the true trajectory with the same initial
condition. To understand in what sense the noisy trajectory reflects the true dynamics of the actual sys-
tem, we developed a rigorous procedure to show that some true trajectories remain close to the noisy one
for long times. The procedure involves a combination of containment, which establishes the existence of
an uncountable number of true trajectories close to the noisy one, and refinement, which produces a less
noisy trajectory. Our procedure is applied to noisy chaotic trajectories of the standard map and the

driven pendulum.

PACS numbers: 05.45.+b, 05.40.+j, 06.50.Dc

The last decade has witnessed a remarkable pace of
development in the understanding of chaotic dynamics.
Experiments have made crucial contributions to the de-
velopment of insights into the behavior of nonlinear sys-
tems, and for the calculation of important dynamical
quantities. But most experiments, physical and numeri-
cal, have noise. In particular, computers have been used
to find particle trajectories and chaotic attractors, and to
calculate the Lyapunov exponents, the dimension spectra
of chaotic attractors and the associated first-order phase
transitions, the decay of correlations and diffusion
coefficients, and so forth. Computers introduce noise in
the system due to truncation errors just as the experi-
mental environment introduces noise in a physical exper-
iment. Moreover, for chaotic processes, neighboring tra-
Jjectories diverge exponentially from each other. Suppose
that truncation error causes errors of order 10 ~® for pro-
cesses involving quantities of order 1. If distances be-
tween two neighboring trajectories double on the average
at each iteration for a given chaotic process, then two
trajectories starting 10 ~® apart will be I unit apart in
less than 20 iterations.

In Fig. 1, we show a picture of two trajectories for the
standard map' [see Eq. (1)] that differ only by 10 ™% on
the initial conditions. After 16 iterates their separation,
or the error in the dynamical variables, grows to be the
same size as the variables themselves, indicating that in-
formation about the initial state of the system is, for
practical purposes, lost. The numerical investigation of
physical models often involves thousands, or even mil-
lions, of iterates of a process. Since the relation between
the computer-generated trajectory and a true trajectory
is no longer clear, the analysis of the physical system is
compromised. In view of all this, we are faced with the
following central question when interpreting numerical
results: For a physical system which exhibits chaos, in
what sense does a numerical study reflect the true dy-
namics of the actual system?

While a noisy trajectory diverges rapidly from the true

trajectory with the same initial conditions, there might
exist a different true trajectory with slightly different ini-
tial conditions which stays near the noisy trajectory for a
long time. We have devised a rigorous procedure to
prove whether there exists a true trajectory which stays
near or shadows the noisy trajectory for a long time.
When that is the case, the noisy trajectory is an excellent
approximation to the true dynamics of the actual chaotic
process.

The shadowing of the noisy trajectory by a true trajec-
tory was originally discussed for a restricted class of
maps,” namely, those invertible maps that are hyperbol -
ic. This means essentially that each point in the space
where the trajectory lies must have a stable direction and
an unstable direction, and that under the map infini-
tesimal displacements in the stable direction decay ex-

FIG. 1. Two trajectories for the standard map with K =3.0.
Both trajectories have the same initial conditions /o=0.08 and
60=0.01. One of them is iterated using single-precision arith-
metic (x) and the other double precision (x).
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ponentially as time goes forward, while infinitesimal dis-
placements in the unstable direction decay exponentially
as they are followed backward in time. In addition, it is
required that the angles between the stable and unstable
directions are uniformly bounded away from zero. If
these assumptions are satisfied, it is possible to prove?
the existence of shadowing for arbitrarily long times.
However, typical physical processes are described by sys-
tems that are nonhyperbolic and their trajectories cannot
be shadowed for arbitrarily long times. There exist some
results for systems of this type: maps of the interval?
and two-dimensional dissipative invertible maps.*

In this work, we present a general procedure to prove
the existence of shadowing for nonhyperbolic chaotic
processes. In particular, we establish the existence of
shadowing trajectories in two representative Hamiltonian
systems, the standard map and the driven pendulum.
The standard map, in action-angle variables, has the
form

I+ =I,+(K/27)sin276, (modl) ,
1)
Op+1=0,+1,+, (modl),

and is nonhyperbolic for K> 0. The standard map is
one of the simplest, yet nontrivial, nonlinear Hamiltoni-
an systems. The driven pendulum is described by the
differential equation y+siny =fycost. Both dynamical
systems have been long used as paradigms of Hamiltoni-
an nonlinear systems,' and important general properties
about Hamiltonian systems were found by studying these
systems. It is interesting to note that much of the past
work involved the calculation of long numerical trajec-
tories,'> yet shadowing for those numerical trajectories
was not proved. We would like to stress that this is the
first time the shadowing property has been proved for a
chaotic trajectory of a typical (i.e., nonhyperbolic) con-
servative system.

To explain our work, we start with a few definitions.
The term pseudotrajectory is used to describe a noisy
trajectory.

Definition.— {p,} f=, is a &¢-pseudotrajectory for f if
|p,,+| —f(p,,)l < ¢ for a =< n < b, where ¢ is the noise
amplitude and » is an integer. We are interested in the
case in which a and b are finite and integers.

Definition.— A true trajectory {xa}2=,
xn+1=f(x,) fora<n=<b.

Definition of shadowing.— The true trajectory {x,}.=4
SOx-shadows {p,,},’,’=,, on a=n=<b if |x, —p,,| < 8, for
as=n=<hb.

Definition.—The pseudotrajectory {p,}/=, has a
glitch at iterate n =N < b if for some relevant &4 there
exists a true trajectory that &x-shadows {p,,},l,’=a for
0=<n= N, but no true trajectory that &x-shadows it for
0<n=<N,, when N\ > N.

To apply our shadowing procedure, we generate a
noisy trajectory in a computer. To assure that our re-
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sults are reproducible and do not depend on specific de-
tails of the computer hardware used to generate the
pseudotrajectory, we define our own round-off procedure
in such a way that it can be duplicated easily. We define
a truncation operator T(x) which truncates each coordi-
nate of x to the B most significant bits. We use B =48
(~107") for the standard map and B=60 (~10"'%)
for the driven pendulum. The orbits we analyze are of
the form p,+, =T[f(p,)].

Our objective is to generate a noisy trajectory and
then to calculate rigorously how close a true trajectory
is, and to obtain lower bounds for how long a true trajec-
tory stays close. We find that for the standard map (1),
with K'=3 and pp=1(0.84,0.54), the &; pseudotrajectory
{pnlN=0 where p,+,=TIf(p,)], is Sy-shadowed by a
true trajectory with 8, =10 "% for N =107 iterates. The
long shadowing time is striking when compared to the
great rate at which nearby orbits diverge from each oth-
er; in this case roughly a factor of 3 on each iteration.
We have chosen the initial conditions po=1(0.84,0.54) to
appear to be typical. We have obtained comparable re-
sults for a variety of other parameter values (see Table
D.

For the driven pendulum y+siny =fycost, with fq
=2.4 and initial condition po={(yo,y0) =(0,0) at time
t=0, a §¢-pseudotrajectory was created with a maximum
truncation error of =10 ~'8. The pseudotrajectory ap-
pears to be chaotic for this parameter and these initial
conditions. Our techniques allow us to prove the ex-
istence of a true shadowing trajectory within 8, =108
for time ¢ ranging between 0 and 10%z. Again there are
similar results for other values of pg and fy. The pen-
dulum calculations were done using a seventh-order
Taylor-series integration method with an explicit
truncation-error formula. The flow was calculated at
times A units apart to generate a discrete trajectory
{pn}N=0. For the results reported here, we used
h =n/1000.

Our technique to prove shadowing for a nonhyperbolic
system involves a combination of (i) containment of a
true trajectory, and (ii) refinement of the noisy trajecto-

ry.

TABLE 1. Shadowing distance & for various values of the
parameter K, where po=1(0.84,0.54) and N = 10° in all cases.

K 5x
1.0 2.9%1077
1.05 5.4x107°%
2.25 6.1x10°10
2.5 2.6x107'°
3.0 2.9%x107°
4.0 1.7x10°'°
5.0 3.5x10°1°
7.5 9.5x10 "




VOLUME 65, NUMBER 13

PHYSICAL REVIEW LETTERS

24 SEPTEMBER 1990

The containment of a true trajectory requires the
construction of a sequence of small parallelograms,
{M,}}=o. The parallelograms must be constructed so
that the image f(M,) lies across M, +, as shown in Fig.
2. There is also an orientation requirement. Two paral-
lel sides of each M, are designated as expanding sides,
and the images of the expanding sides of M, must inter-
sect the two contracting sides of M, 4+ but cannot inter-
sect the expanding sides of M, +,. In practice it is neces-
sary to have an upper bound on the sizes of the second
partial derivatives of f in order to guarantee that the im-
ages of the expanding sides of M, do not bend so much
that they touch the expanding sides of M,+;. When we
have such parallelograms, we say it is a containing se-
quence of parallelograms {M,}N=o.

We now argue that there must be a true trajectory
{X,} M=o contained in {M,}}~o with x, contained in M,
for 0=<n=<N. Let yy be a curve lying wholly in Mg as
shown in Fig. 2 running from one of the contracting sides
of M to the other. Then f(yy) contains a curve y, that
lies wholly in M| and runs from one contracting side of
M, to the other. In fact, there exist curves y,+; con-
tained in f(y,) that lie wholly in M, +,. Select any point
on the final curve yn and call it xy. Then xy-, defined
to be f ~'(xn), lies on yn—1 and so lies in My —,. Con-
tinuing backwards, x, is defined to be f ~'(x,+,) for
0<n=<N, giving then a true trajectory {x,} =0 con-
tained in {M,}}=0. Hence the sequence of parallelo-
grams in fact contains a true trajectory.

To find the shadowing distance, we compute the dis-
tance of the nth point p, of the original pseudotrajectory
to the furthest point of the nth parallelogram M,, and
then take the maximum of these distances along the
whole trajectory. Note that the term ‘“parallelogram”
connotes a two-dimensional figure, and the examples of
this paper fit within this context. However, the preced-
ing argument and other techniques we present go over
without essential change to phase spaces of higher di-
mensions.

The expanding and contracting sides of a parallelo-
gram M, are parallel to the local unstable u, and stable
S, unit vectors at a point p,, respectively. The unit vec-

Image of
expanding
sides

fi( A())

Expanding
sides

FIG. 2. Containment of a true trajectory. 7 is the piece of
f(yo) that runs from A, to B).

tors follow the linearized map, i.c.,

W+ =Lou,/|Lyu,l (2a)
and

Sn+1=LnSp/|Lnsnl , (2b)

where L, is the Jacobian matrix of f at p,. For an arbi-
trary initial unit vector ug, Eq. (2a) gives u, nearly
aligned with the unstable direction at p, after just a few
iterates, while, for an arbitrary initial unit vector sy, Eq.
(2b) is iterated backwards and gives s, nearly aligned
with the stable direction at p, after just a few iterates.

For a chaotic trajectory in a nonhyperbolic system,
containment will not continue forever. Containment
breaks down when no parallelogram M, +, can be found
to make a “plus” sign with f(M,). These glitches are
rare, but do occur when an angle of the parallelogram
becomes nearly zero, so that the parallelogram effec-
tively loses a dimension. This occurs when the angle be-
tween the stable and unstable directions becomes small
relative to the noise level &¢ of the pseudotrajectory. It
follows that the lower the noise level, the longer the sha-
dowing trajectory will be. We make a quantitative con-
Jecture of this relationship at the closing of the paper.

The refinement technique is essentially a method of
noise reduction which is used to enhance the success of
the containment procedure. (It can also be used for
noise reduction of experimental data.) Given the pseu-
dotrajectory {p,,},,=o, the refinement process produces a
less noisy pseudotraJectory {pn} M=o which remains uni-
formly near {p,}N=¢p and whose points serve as the
centers of the parallelograms {M,,},,ao in the contain-
ment procedure.

Let m,+, represent the one-step noise

where it is assumed that |z, +| <& (For our trajec-
tories, we use T[f(p,)] instead of f(p,).) The refined
orbit {p,} is constructed by setting

Pr=p,t®,. 4

The equation satisfied by ®,, using Eqs. (3) and (4), is
then

Tn+1=Pn+1

—f(p,), (5)

where p,+,=f(p,). Requiring ®, to be small, we can
expand f(p,) about p, in Taylor series to get f(p,)
=f(p,)+L,®,. Hence, Eq. (5) becomes

q>n +1 =Ln¢n

D, =f(p,) —m,+,

“Rp+ - (6)

The objective is to find {®,} Y=o, and hence {'},’,;o by
Eq. (4), in the coordinates {u,}}=¢ and {s,}¥=o. For
that we represent ®, as ®,=aq,u,+p,s, and =&, as

=nnu,+§,8n, respectively. Observe that f(p,) in Eq.
(3) can be well approximated by f(p,), the noisy image
of p,. Thus, given {p,} =0, {n,} =0 and {¢,},)= can be

1529



VOLUME 65, NUMBER 13

PHYSICAL REVIEW LETTERS

24 SEPTEMBER 1990

calculated directly from Eq. (3). To find {a,{,=0 and
{8, M=o in terms of {n,} =0 and {£,} =0, rewrite Eq. (6)
as

¢n+l=Ln(anun+ﬂnsn)_(77"+Iun+l+€n+lsn+l)» (7)

where ®,4+1=a,+ 1Us+1+B,+18:+1. The unit vectors
follow the linearized map. The substitution of Egs. (2)
in (7) yields recursive relations for {a,} =0 and {8,} <o

an+l=|Lnun|an_nn+l s
(8)
Br+1 =|Lnsn|ﬁn_gn+l .

Equations (8) are made computationally stable by calcu-
lating the coefficients a, in the unstable direction u, by
starting at the end point n=N, and the coefficients 3, in
the stable direction s, by starting at the initial point
n=0:

an=(an+l+nn+])/|Lnun|a aN=0a (93)

and

ﬁn+l=ﬂn|Lnsn|_§n+l’ B0=0 (9b)

The refinement computations are carried out using
higher accuracy than the noise level of {p,}N=o. We
used 96-bit (~10~%) arithmetic for the refinement
step. The pseudotrajectory {p,} = is less noisy than the
original {p,})=o. In fact, when the refinement step is
iterated, the procedure is superconvergent: The number
of significant digits typically doubles on each iteration of
the process. Of course, at a glitch no decrease in the
noise may be possible.

In conclusion, we have a rigorous procedure to shadow
noisy trajectories by true trajectories for nonhyperbolic
systems, which are the systems typically found in non-
linear dynamics. To obtain parallelograms and optimal
bounds on the shadowing distance, we combine the pro-
cedure for the containment of a true trajectory with the
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procedure for the refinement of the noisy trajectory.
Table I shows shadowing results for various values of the
parameter of the standard map. Observe that we can
shadow chaotic processes down to the critical value of
the parameter K==0.97 when the last Kolmogorov-
Arnol’d-Moser surface is broken and when the islands of
stability are large. We have applied our procedure to
other chaotic trajectories of the standard map and pen-
dulum as well as to other dynamical systems.*

In order to indicate the relative magnitudes of the
quantities we expect to find if we consider a different
physical model, we present the following conjecture: For
a typical two-dimensional Hamiltonian map yielding
chaotic trajectories with a small noise amplitude &¢> 0,
we expect to find 5XS\/6—]' for a trajectory of length
N=1//5.
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