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Shadowing of Physical Trajectories in Chaotic Dynainics: Containment and Refinement
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For a chaotic system, a noisy trajectory diverges rapidly from the true trajectory with the same initial
condition. To understand in what sense the noisy trajectory reflects the true dynamics of the actual sys-
tem, we developed a rigorous procedure to show that some true trajectories remain close to the noisy one
for long times. The procedure involves a combination of containment, which establishes the existence of
an uncountable number of true trajectories close to the noisy one, and refinement, which produces a less
noisy trajectory. Our procedure is applied to noisy chaotic trajectories of the standard map and the
driven pendulum.

PACS numbers: 05.45.+b, 05.40.+j, 06.50.Dc

The last decade has witnessed a remarkable pace of
development in the understanding of chaotic dynamics.
Experiments have made crucial contributions to the de-
velopment of insights into the behavior of nonlinear sys-
tems, and for the calculation of important dynamical
quantities. But most experiments, physical and numeri-
cal, have noise. In particular, computers have been used
to find particle trajectories and chaotic attractors, and to
calculate the Lyapunov exponents, the dimension spectra
of chaotic attractors and the associated first-order phase
transitions, the decay of correlations and diA usion
coefficients, and so forth. Computers introduce noise in

the system due to truncation errors just as the experi-
mental environment introduces noise in a physical exper-
iment. Moreover, for chaotic processes, neighboring tra-
jectories diverge exponentially from each other. Suppose
that truncation error causes errors of order 10 for pro-
cesses involving quantities of order 1. If distances be-
tween two neighboring trajectories double on the average
at each iteration for a given chaotic process, then two
trajectories starting 10 apart will be 1 unit apart in

less than 20 iterations.
In Fig. 1, we show a picture of two trajectories for the

standard map' [see Eq. (1)] that diA'er only by 10 "on
the initial conditions. After 16 iterates their separation,
or the error in the dynamical variables, grows to be the
same size as the variables themselves, indicating that in-

formation about the initial state of the system is, for
practical purposes, lost. The numerical investigation of
physical models often involves thousands, or even mil-

lions, of iterates of a process. Since the relation between
the computer-generated trajectory and a true trajectory
is no longer clear, the analysis of the physical system is

compromised. In view of all this, we are faced with the
following central question when interpreting numerical
results: For a physical system which exhibits chaos, in

what sense does a numerical study reflect the true dy-
namics of the actual system?

While a noisy trajectory diverges rapidly from the true
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FIG. 1. Two trajectories for the standard map with K =3.0.

Both trajectories have the same initial conditions ID=0.08 and
00=0.01. One of them is iterated using single-precision arith-
metic (x) and the other double precision (e).

trajectory with the same initial conditions, there might
exist a diA'erent true trajectory with slightly diA'erent ini-
tial conditions which stays near the noisy trajectory for a
long time. We have devised a rigorous procedure to
prove whether there exists a true trajectory which stays
near or shadows the noisy trajectory for a long time.
When that is the case, the noisy trajectory is an excellent
approximation to the true dynamics of the actual chaotic
process.

The shadowing of the noisy trajectory by a true trajec-
tory was originally discussed for a restricted class of
maps, namely, those invertible maps that are hyperbol-
ic. This means essentially that each point in the space
where the trajectory lies must have a stable direction and
an unstable direction, and that under the map infini-
tesimal displacements in the stable direction decay ex-
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ponentially as time goes forward, while infinitesimal dis-
placements in the unstable direction decay exponentially
as they are followed backward in time. In addition, it is
required that the angles between the stable and unstable
directions are uniformly bounded away from zero. If
these assumptions are satisfied, it is possible to prove
the existence of shadowing for arbitrarily long times.
However, typical physical processes are described by sys-
tems that are nonhyperbolic and their trajectories cannot
be shadowed for arbitrarily long times. There exist some
results for systems of this type: maps of the interval'
and two-dimensional dissipative invertible maps.

In this work, we present a general procedure to prove
the existence of shadowing for nonhyperbolic chaotic
processes. In particular, we establish the existence of
shadowing trajectories in two representative Hamiltonian
systems, the standard map and the driven pendulum.
The standard map, in action-angle variables, has the
form

I„+~ =I„+(K/2x) sin2n8„(mod 1 ),

8„+1=8„+I„+~(modl),

and is nonhyperbolic for K&0. The standard map is
one of the simplest, yet nontrivial, nonlinear Hamiltoni-
an systems. The driven pendulum is described by the
differential equation y'+siny =focost. Both dynamical
systems have been long used as paradigms of Hamiltoni-
an nonlinear systems, ' and important general properties
about Hamiltonian systems were found by studying these
systems. It is interesting to note that much of the past
work involved the calculation of long numerical trajec-
tories, ' yet shadowing for those numerical trajectories
was not proved. We would like to stress that this is the
first time the shadowing property has been proved for a
chaotic trajectory of a typical (i.e. , nonhyperbolic) con-
servative system.

To explain our work, we start with a few definitions.
The term pseudotrajectory is used to describe a noisy
trajectory.

Definition Ip„j„=, is.—a Sr pseudorraje-ctory for f if
~p, +~

—f(p„) ~
& 8r for a ( n (b, where 8r is the noise

amplitude and n is an integer. We are interested in the
case in which a and b are finite and integers.

Definition

A tru. —e trajectory [x„j„=, satisfies
x„+~ =f(x„) for a ( n (b.

Definition of shadowing The true tr.a—jectory Ix„j„=,
6„-shadows [p„j„=, on a ( n ( b if

~

x„—p„~ & 8„ for
a ~ n ~ b.

Definition

The pseu. d—otrajectory Ip„j„=, has a
glitch at iterate n =N & b if for some relevant 6„ there
exists a true trajectory that 8„-shadows Ip„j„=, for
0 ~ n ~ N, but no true trajectory that 6„-shadows it for
0 ~ n ~ N], when Ã[ & W.

To apply our shadowing procedure, we generate a
noisy trajectory in a computer. To assure that our re-

TABLE I. Shadowing distance 6„ for various values of the
parameter K, where po=(0.84,0.54) and N =10 in all cases.

1.0
1.05
2.25
2.5
3.0
4.0
5.0
7.5

2.9 x 10
5.4 x10
6.1x10-"
2.6x10-"
2.9 x 10
1.7 x 10
3.5 x 10
9.5 x10

suits are reproducible and do not depend on specific de-
tails of the computer hardware used to generate the
pseudotrajectory, we define our own round-oA procedure
in such a way that it can be duplicated easily. We define
a truncation operator T(x) which truncates each coordi-
nate of I to the 8 most significant bits. We use 8=48
(-10 ' ) for the standard map and B =60 (-10 ' )
for the driven pendulum. The orbits we analyze are of
the form p„+|=T[f(p,)].

Our objective is to generate a noisy trajectory and
then to calculate rigorously how close a true trajectory
is, and to obtain lower bounds for how long a true trajec-
tory stays close. We find that for the standard map (1),
with K=3 and pa=(0. 84,0.54), the Br pseudotrajectory
[p„j„=n where p„+|=T[f(p„)], is 8„-shadowed by a
true trajectory with 8„=10 for 1V =10 iterates. The
long shadowing time is striking when compared to the
great rate at which nearby orbits diverge from each oth-
er; in this case roughly a factor of 3 on each iteration.
We have chosen the initial conditions po =(0.84, 0.54) to
appear to be typical. We have obtained comparable re-
sults for a variety of other parameter values (see Table
I).

For the driven pendulum y'+siny =fncosi, with fo
=2.4 and initial condition po=(yp, yp) =(0,0) at time
t =0, a Br-pseudotrajectory was created with a maximum
truncation error of Br =10 ' . The pseudotrajectory ap-
pears to be chaotic for this parameter and these initial
conditions. Our techniques allow us to prove the ex-
istence of a true shadowing trajectory within 6„=10
for time t ranging between 0 and 10 z. Again there are
similar results for other values of po and fn. The pen-
dulum calculations were done using a seventh-order
Taylor-series integration method with an explicit
truncation-error formula. The flow was calculated at
times h units apart to generate a discrete trajectory
[p j„-o. For the results reported here, we used
h =z/1000.

Our technique to prove shadowing for a nonhyperbolic
system involves a combination of (i) containment of a
true trajectory, and (ii) refinement of the noisy trajecto-
ry.
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calculated directly from Eq. (3). To find {a„}„'=0and

{p„}„=oin terms of {rl„}„=oand {g„}„=o,rewrite Eq. (6)
as

Pn+ I ILnsn IPn (n+ ) .

Equations (8) are made computationally stable by calcu-
lating the coefficients a„ in the unstable direction u„by
starting at the end point n =N, and the coefficients p„ in

the stable direction s„by starting at the initial point
n=0:

and

an = (an+ i+ r)n+ I )I I 1,,un I, aiv =0
~

P.+i =P.IL„s.l

—(.+1, Po=0

(9a)

(9b)

The refinement computations are carried out using
higher accuracy than the noise le~el of {p„}„=o.We
used 96-bit (-10 ) arithmetic for the refinement
step. The pseudotrajectory {p„}„-ois less noisy than the
original {p„}„-o.In fact, when the refinement step is
iterated, the procedure is superconvergent: The number
of significant digits typically doubles on each iteration of
the process. Of course, at a glitch no decrease in the
noise may be possible.

In conclusion, we have a rigorous procedure to shadow
noisy trajectories by true trajectories for nonhyperbolic
systems, which are the systems typically found in non-
linear dynamics. To obtain parallelograms and optimal
bounds on the shadowing distance, we combine the pro-
cedure for the containment of a true trajectory with the

@„+) =L„(a„u„+P„s„)—(r)„+ ( u„+ )+g„+ (s„+) ), (7)

where @n+ ~
=a„~lu„+ ~+pn+ lsn+ ~. The unit vectors

follow the linearized map. The substitution of Eqs. (2)
in (7) yields recursive relations for {a„}„=oand {p„}„=n..

a +n]
= ILnunlan tin+} i

procedure for the refinement of the noisy trajectory.
Table I shows shadowing results for various values of the
parameter of the standard map. Observe that we can

shadow chaotic processes down to the critical value of
the parameter K=0.97 when the last Kolmogorov-
Arnol'd-Moser surface is broken and when the islands of
stability are large. We have applied our procedure to
other chaotic trajectories of the standard map and pen-

dulum as well as to other dynamical systems.
In order to indicate the relative magnitudes of the

quantities we expect to find if we consider a diff'erent

physical model, we present the following conjecture: For
a typical two-dimensional Hamiltonian map yielding

chaotic trajectories with a small noise amplitude 6f )0,
we expect to find 8„~jbq for a trajectory of length

N= 1/ JSp.
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