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Lyapunov Exponents from Observed Time Series
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We examine the question of accurately determining Lyapunov exponents for a time series. We find

that it is advantageous to use local mappings with higher-order Taylor series, rather than linear maps as
done earlier. We demonstrate this procedure for the Ikeda map and the Lorenz system. We present
methods for identifying spurious exponents by analyzing data-set singularities and by determining the

Lyapunov direction vectors. The behavior of spurious exponents in the presence of noise is also investi-

gated, and found to be diA'erent from that of the true exponents.

PACS numbers: 05.45.+b

Determining the Lyapunov exponents of a nonlinear

system from measurements of a time series is an impor-
tant challenge for any analysis of the dynamics. Positive
exponents are generally regarded as equivalent to the

presence of real dynamical chaos, and the Lyapunov ex-

ponents are ciassifiers of the dynamics since they are
characteristic of the attractor and independent of any

given orbit or initial condition. ' If the governing equa-
tions are known, then there are reliable methods for
determining all of the exponents. If one only has a time

series, then the problem becomes much more difficult.
There are several reported eA'orts to provide algorithms
for the determination of the Lyapunov exponents from
observations alone. Our own experience with these
algorithms is that they are reliable only for the largest
exponent and not for the others. The importance of
Lyapunov exponents in the study of physical systems has

led us to provide an improvement on these previous
efIorts and to address several other questions of impor-
tance in the determination of Lyapunov experiments
from data. In this Letter we report on the basic outline
of our methods. We leave details and numerous other
examples to our longer paper.

Earlier work and ours assume that a scalar time series
x(10+nr) =x(n), n =1,2, . . . , ND, has been observed.

From this the phase space of the system has been recon-
structed by the familiar time-delay method ' to pro-
duce data vectors in d dimensions:

y(n) = [x(n),x(n+ T), . . . , x(n+ T(d 1))I . —

In discretized time one takes the dynamics to be a map
of R to itself which evolves the vectors y(n): y(n
+T2) =F(y(n)), where the time delay Tq is indepen-
dent of T. The product of the Jacobians of this map
DF(y) =BF(y)/8y evaluated along an orbit contains the
information required for the Lyapunov exponents.

The first step in the analysis is to find the neighboring
points of a given point in the data set. Our choice of
neighbors is limited by the finite size of the data set, by
stochastic noise, and most importantly by the fractal na-
ture of the attractor. These limitations are the main
source of difficulties in the analysis. Finding legitimate
neighbors of a given point is one of the most critical
tasks in obtaining accurate results. For this reason it is
often advisable to maintain two diferent dimensions for
converting the scalar data set into time-delay vectors.
The first is a "local dimension" d which is equal to the
number of Lyapunov exponents that the calculation will
produce and is the dimension of the Jacobian matrices.
The second is a "global dimension" d(,- which is used in
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the process of identifying neighbors. 1G can be made
larger than d in order to insure that we do not have any
false neighbors entering the calculation as might be the
case if the attractor is folded in such a way that it
crosses itself. One way of choosing values for d and d6
is to start by computing a rough estimate of the fractal
dimension dz of the attractor. If an object of dimension
d& is mapped in a very general way into a space of di-
mension dq it can typically have self-intersections of di-
mension 2d~ —dG. Thus we would like to make dg
larger than 21~. It is not advisable to make 1 much
greater than d&, since locally the attractor has very little
extension into these additional directions. A good first
choice is to try making d the next integer greater than or
equal to the fractal dimension d~. This choice will al-

ways give at least one negative exponent for a chaotic
system. One is then free to further increase 1 and see
what effect this has on the results.

Earlier work attempts to find the required 3acobians
by making local linear maps of neighborhoods near the
orbit y(n) to neighborhoods at a subsequent time. We
depart from these earlier works by making local polyno-
mial maps, allowing for a more accurate determination
of DF(y). While there have been previous uses of
higher-order mappings in studies of dynamical systems
(see, e.g. , Refs. 13 and 14) this is, we believe, the first

application of this approach to the calculation of the full

Lyapunov spectrum. The vector from the rth neighbor
to an orbit point y(n) is denoted by z". Using a least-
squares fit to the data we obtain a polynomial map from
this vector at time 0 to the same vector on time step T~
later: z'(n;0) z'(n; T2), including all terms up to
some specified order Nq,. ~. We have examined the ef-
fects of retaining terms up to fifth order in z'(n;0). We
use at least twice the number of neighbors as parameters
to be determined in order to insure reliable results. We
then proceed to calculate the Lyapunov exponents using
the QR decomposition technique discussed by Eckmann
et al. ' ' As we show with our methods, one can deter-
mine the positive, zero, and often one or more negative
exponents.

In this Letter we report on results from the Ikeda'
map of the complex plane to itself,

z(n+1) =p+Bz(n)exp[itr —ia/[I+iz(n)i ]], (1)

where p=1.0, 8=0.9, x =0.4, and a=6.0. For these
parameters we calculate (using the map) that Xi and X2

are 0.503 and —0.719, respectively. We also study the
Lorenz system of three ordinary differential equations: '

0 )ltd
s P,'

I

4 1

1 j

where we take o.=16, b =4, and r =45.92. For these pa-
rameters the accepted values for the Lyapunov exponents
are 1.50, 0.00, and —22.5, respectively. The large nega-
tive exponent makes this system a particularly challeng-
ing test for our time-series method, and also requires the
use of very accurate data, as will be shown.

The difficulty in determining the negative exponents
from a time series comes primarily from the fact that the
attractor is often very "thin" at many locations in the
directions associated with certain negative exponents.
Even when there is a reasonably large and accurate data
set, this will often make curvature effects within a given
neighborhood become significant. A linear analysis be-
comes totally inaccurate when the displacement due to
local data-set curvature is comparable to the thickness of
the data set. Going to a higher-order approximation of
the mapping can correct this.

The Ikeda map is an excellent example of a system for
which the use of separate local and global dimensions is
important. Examination of the two-dimensional time-
delay representation Fig. 1 shows clearly the self-
intersection effect which was discussed previously. Hav-

ing determined the fractal dimension dq to be about 1.8
we would choose dq to be at least 3 and preferably 4,
and an appropriate value for 1 is 2. Using the incorrect
values dg =d=2 in a third-order calculation we obtain
)j, i

=0.565 and Xz= —0.426, while if we use 1G =4 and
1=2 we obtain ).1=0.512 and Xz= —0.736 which are
much closer to the correct values (0.503 and —0.719). If
we keep 1equal to dq but increase both of their values to
3, the overlap problem is reduced but we now obtain 3
exponents (0.554, —0.262, and —0.821) and so we are
faced with the problem of deciding which, if any, are val-
id exponents.

We move now to the Lorenz system. In the case of
data from the Lorenz equations we have used two slight-

ly different settings for the evolution time lag. We
display the results of both our calculations in Table I.

dx[
(t) =cr[x2(t) —x i (t)],

dt

dx2
(t) = —xl(t)x3(t)+rx1(t) —x2(t),

dx3
(t) =x, (t)x (t) bx3(t), —

dt

(2) x(n)

FIG. 1. Reconstructed phase portrait of the Ikeda map in

d& =2. The lack of a one-to-one projection of the attractor
onto the [x(n),x(n+1)] plane is clear to the eye.
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TABLE I. In the top part of the table we display the

Lyapunov exponents for the Lorenz system computed from

50000 data points evaluated with a sampling time r = T~ =0.02
and a time delay T=5r =0.1. The data have five digits of ac-
curacy and are analyzed using d=d(; =3 for varying orders
IV+„.„of the mapping. In the bottom part we display the

Lyapunov exponents for the Lorenz system computed from

20000 data points evaluated with a sampling time i=0.05 and

a time delay T=T~ =2m =0.1. The data have 9+ digits of ac-
curacy and are analyzed using d=3 and d& =7 for mapping or-
ders 1-5.

1.4504
1.5027
1.5121
1.5561

X2

—0.005 712 3
—0.046041

0.006 964 1

0.032 219

—13.999
—19.448
—22.925
—23.465

1.549
1.519
1.505
1.502
1.502

—0.094 70
—0.026 47
—0.005 695
—0.002 847
—0.000 387

—14.31
—20.26
—22.59
—22.63
—22.40

As the reader will observe, the negative exponent is very
difficult to obtain, and here we see it dramatically "snap-
ping into place" as we increase the order of the calcula-
tion to 3 and above. Also note the improvement in accu-
racy of the zero exponent in the lower part of Table I.
The greater accuracy of the lower part of Table I is due
primarily to the higher accuracy of the data set.

In Table II, we analyze the Lorenz equations with a
local dimension d=4, which we know must generate at
least one spurious exponent. When using a second-order
fitting to our local map, the results are poor for all of the
Lyapunov exponents. Increasing the polynomial fitting
to third order we find that the last three exponents are
very close to the true exponents, while the first is 10
times larger than the true value of the largest exponent.

In addition to obtaining the Lyapunov exponents, one
can also obtain the direction vectors L, associated with
these exponents. The L, are defined by the requirement
that a small displacement along any one of these direc-
tions followed forward or backward in time will expand
or contract on average at the rate given by the corre-

sponding exponent. Although they are different at every
location on the attractor, their calculation requires a
knowledge of the orbit far into the past and future for a
given point on the attractor. The details of their calcula-
tion are to be found in our longer paper. They should
be examined to see if two or more of them are nearly col-
linear. This can occur if a poor choice was made for the
delay time (probably too small) or if nonlinear effects
are generating a spurious exponent. The spurious nature
of ki in our Lorenz-system calculations can be rapidly
identified by examining the local data thickness Thi in

the Li direction, which is over 5 orders of magnitude
smaller than the thickness Th2 for L2. A valid positive
exponent should not exhibit any significant "thinness, "
and it is preferable for all exponents to have thickness
levels above the intrinsic noise level of the data set. The
thickness Th, is essentially the rms displacement of the
data points within a local neighborhood in the L; direc-
tion, with corrections for data-set curvature; more details
can be found elsewhere.

Although we have shown that it is possible to include
singular directions in the calculation and later identify
the questionable exponents, the presence of relatively
small amounts of noise makes this more difficult. This is

illustrated in Fig. 2 for the Lorenz system. We have
added Gaussian white noise to the data points with the
indicated standard deviation. In Fig. 2(a) we have used
d=3, while in 2(b) we used d=4, which gives one spuri-
ous exponent. In both cases we used a third-order ex-
pansion for the local mappings. The spurious exponent
in 2(b) drops rapidly as the added noise is increased, go-
ing from +19 down to —6. This behavior is in fact
another way of identifying a spurious exponent in ex-
tremely accurate data. However, the absence of such a
drop does not guarantee that spurious exponents do not
exist.

We conclude by noting that a simple extension to
higher order of earlier methods for determining the
Lyapunov spectrum for a dynamical system from obser-
vations alone works strikingly well when tested on famil-
iar systems such as the Ikeda map and Lorenz attractor.
We have also suggested and tested on these examples
ways to determine which of the exponents are valid and
which are spurious. Finally, we explored the efI'ect of
numerical accuracy and external noise on the determina-

TABLE II. Lyapunov exponents and thicknesses (Th) of the attractor along the corresponding Lyapunov direction vectors for the
Lorenz system, through order Ã-r„, =4. The calculation was done with 20000 data points using d=4 and d& =7 so that there is one
spurious exponent. For 1V+„y =2 and above, the spurious exponent separates from the true ones and can be identified by its extremely
small thickness value.

1.936
4.36

18.04
26.96

Thl

0.467
0.002 56

1.89 x 10
2.5 x 10

0.802
1.401
1.502
1.503

Th

1.083
0.412
0. 129
0.066

—1.137
—0.656
—0.0005
—0.0048

Th)

1.1 1 1

0.454
0.091
0.066

—13.44
—20.57
—22.77
—22.55

Th4

0. 162
0.001 16

2.7 x 10
5.6 x 10
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tion of these exponents. We found the calculation to be
quite sensitive to noise, which reflects the fact that fluc-

tuations in phase-space points make determination of the
required local Jacobians quite sensitive. Further exam-

ples and extensive details on the methods outlined here
will be found in our longer paper. Also, the algorithms
used here are available on request from the authors.
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FIG. 2. The eAect of external noise on the determination of
Lyapunov exponents for the Lorenz system. (a) Here local di-
mension is d=3. (b) Here d=4. The spurious exponent
wanders from about +19 to nearly —6 as the noise level is
varied. Note that the exponents do not cross each other but
prefer to switch roles as they become close. In the d=3 case
the correct exponents are more robust against the addition of
noise.
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