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Conductance Distribution at the Mobility Edge
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lt is shown that, for a system at the mobility edge, the conductance distribution Pt (g) approaches an
entirely universal function P*(g) when the size L of the system increases. The function P*(g) depends
on dimensionality d alone and does not depend on any details of the model. In obtaining P*(g) use was
made of the conductance cumulants calculated by Altshuler, Kravtsov, and Lerner [Phys. Lett. A 134,
488 (1989)]. The calculations are limited to spatial dimension d =2+ e, v, here e is a small number.

PACS numbers: 72. 15.Rn

In quantum transport one is usually interested in the
conductance G(L) of a disordered electronic sample,
which is assumed to be a d-dimensional hypercube of
size L. At sufficiently low temperatures (the mesoscopic
regime) the sample should be viewed as one coherent
unit (a huge molecule) and its conductance is sensitive to
the precise impurity arrangement in the sample. Even in

a good metal there are anomalously large conductance
fluctuations from sample to sample. ' Under increase of
disorder the system approaches the Anderson transition
point and then crosses over into the insulating regime.
At the transition, and in the insulator, fluctuations in the
conductance become very large and it therefore becomes
necessary to study the full distribution of conductances
Pt (G), for an ensemble of macroscopically identical
samples of size L. -' In particular, one would like to
know whether PL(G) approaches a universal limiting
function when the size L of the system increases. It is
clear that such a limiting distribution can be achieved, if
at all, only in the L ~ limit (and for the appropriate
variable). It is important, however, to realize that al-
ready for finite L the distribution PL(G) might become
approximately universal and independent, to a large ex-
tent, of the microscopic details specifying the system or
the model.

The significance of limiting distributions and their re-
lation to scaling was discussed in detail in Ref. 5. It
was argued there that universal limiting distributions do
indeed exist and that, in the case of weak disorder, they
can be specified by just one parameter. This means that
the limiting distribution is completely determined by the
choice of a single parameter which is a measure of the
local disorder in the system. If this parameter is tuned
to some critical value, corresponding to the mobility
edge, the distribution Pt (G) evolves towards an abso-
lutely universal function limt . PL(G) =P*(G) which
depends on the dimensionality alone. (One should keep
in mind that, for locally weak disorder, the Anderson
transition can occur only for d =2+ t. where e is a small
number. ) The calculations in Ref. 5 were done for a toy
model (derived by a Migdal-Kadanoff'-type approach)
which, although displaying a metal-insulator transition,

was by no means a realistic model of a genuine d-
dimensional electronic system. It is the purpose of this
Letter to derive the limiting distribution P*(G), for a
system at the mobility edge, using the standard mod-
el' of noninteracting electrons moving in the presence
of a d-dimensional random potential. In what follows we
shall make use of the conductance cumulants, C„(L),
calculated by Altshuler, Kravtsov, and Lerner [C„(L)
denotes the nth cumulant of the conductance distribution
PL(g) where g= 'trhG/e is the dimensional conduc-
tance]. It was shown in Ref. 6 that, for d=2+e and at
the mobility edge,

(e" ', n + no= 1/e,
C„(L)= t

(L/I)'" "
n &n, ,

where I is the elastic mean free path and no is a large in-
teger of order 1/e. According to Eq. (1) the low-order
cumulants (n (nest) scale, under change of L, towards
universal numbers e" . However, the high-order cumu-
lants (n & no) increase with L indefinitely and do depend
(through the mean free path) on the model. It seems, at
first sight, that such a behavior of the high-order cumu-
lants precludes having an absolutely universal (i.e., in-
dependent of I) distribution P"(g), in the limit of
L ~. Below we show that this is not so and that there
is no contradiction between Eq. (1) and the existence of
a universal limit limt PL (g):P*(g). —

Before proceeding further, let us return to the toy
model of Ref. 5. The great advantage of this model is
that it enables one to work directly with the full distribu-
tion rather than only with its moments (or cumulants).
One can therefore avoid some ambiguities and guesses
which will be involved in the reconstruction of the distri-
bution Pt (g) for the "real" problem from its cumulants
[Eq. (1)]. For the toy model it has been possible to
derive a difterential equation for the resistance distribu-
tion Wt (p) where p =1/g and L is measured in some mi-
croscopic units. This equation contains as a parameter
the first moment of Wq(p), i.e., the averaged resistance
pL. The value pt =p,. =e+O(e ) corresponds to the
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mobility edge, and the equation for Wl (p) is then

aw
ag

e(p +p) +(I+a)pW2 8W

p Bp
(2)

r)p, /6(=(en '
n) -p„+—en'p„ (4)

It follows from these equations that the low-order mo-

ments (n & I/t. ) approach, in the limit of large L, some

constant values p„* related to each other by' (po =1 by
normalization)

p„* = [en/(I —en)]p„* ~ (n & I/e) . (5)

On the other hand, high-order moments (n & I/e) keep
increasing with L as

e (&n —n)j ~ L&n —n (n & I/&) (6)

and are sensitive to the initial distribution Wo(p) [the
nonuniversal coeScients A„ in Eq. (6)]. One concludes,
thus, that nonuniversal, and growing with L, moments

[Eq. (6)] are perfectly compatible with the existence of
an entirely universal limiting distribution [Eq. (3)]. As

explained in Ref. 5, such a behavior of the high-order
moments indicate that these moments are completely
dominated by the tails of the distribution, i.e. , by rare,
statistically insignificant events.

Let us now imagine that the equation for Wi (p) [Eq.
(2)] is not known and that all one knows are the mo-

ments of the distribution, for large L [Eqs. (5) and (6)].
Can one reconstruct the distribution WI (p) from these

moments? The answer is, perhaps a bit surprisingly,
negative. The point is that for a fixed L (larger than I)
the high-order moments grow very fast with their num-

ber n (faster than n!), so that the problem of moments
(i.e., determining the distribution from its moments) has
no unique solution. ' It is possible, nevertheless, to go
back from the moments [Eqs. (5) and (6)] to the distri-
bution WL(p) by making certain plausible assumptions.
Here is a possible route: First, derive from Eqs. (5) and

(6) the underlying Eq. (4) describing the evolution of the
moments p„with L, or g [in doing so one assumes that
these underlying equations contain only first-order
derivatives with respect to j; this assumption is

where g= lnL—. Equation (2) is a Fokker-Planck equation
and one can prove by standard means' that any initial
distribution Wo(p) evolves towards the same limiting
distribution Iimi . WL(p)—:W (p). This limiting dis-

tribution is obtained by setting the right-hand side of Eq.
(2) to zero and solving the resulting ordinary differential
equation. This gives ' '

(3)

Let us now look at the moments p„(L)=fdpp" WI. (p)
of the distribution WL(p). Multiplying (2) by p and in-

tegrating over p, one obtains the following recursion
equations for p„:

equivalent to the statement that the distribution WL (p)
at some arbitrary scale I is completely determined by its
shape Wt (p) at some initial scale Lo]. Second, multiply
the obtained equations [Eq. (4)] by ( —X) "/n! and sum

over n, which leads to the following equations for the
quantity I (X) =P„(—k) "p„/n! (the generating function
for the moments p„):

(7)

One must realize that (for large L) the sum defining
I (k) is diverging [this is precisely the reason why it was

not possible to recover WL(p) directly, and uniquely,
from its moments given by Eqs. (5) and (6)]. However,
the final equation (7) is perfectly sensible if I L(A, ) is un-

derstood in its most general sense, namely, as the La-
place transform of the distribution Wq (p), i.e.,

I L(k) =fo dpe ~WL(p). In fact, one can check im-

mediately that Eq. (7) is just the Laplace transform of
Eq. (2). Thus, Eq. (7) for the generating function con-
tains exactly the same information as Eq. (2) for the dis-

tribution function and, in particular, it enables one to ob-
tain the limiting distribution W*(p) [Eq. (3)].

Let us now return to the "real" problem of obtaining
the conductance distribution, at the mobility edge, from
the cumulants given by Eq. (1). This problem is

mathematically not well posed since (for L & I) the
high-order cumulants grow too fast with n. In this

respect the situation is the same as for the toy model
considered above. Guided by the experience with the
toy-model one can proceed along the following route.

(i) The first step is to consider Eq. (1) as a solution of
some underlying differential equations for the cumulants

C„(L). Assuming that these equations contain only first

derivatives with respect to g=lnL (see above), one can
write down the following set of equations:

8C, =(en'- —2n)C„+2neC„—
~

.

One can check that high-order cumulants, i.e., with

n & no (where no is the first integer larger than 2/e),
have for large L the behavior required by Eq. (1). Cu-
mulants with n & no approach, in the limit I- ~, some
fixed values C„* given by the recursion relation C„*

=2eC„*-~/(2 —en). For n &&1/e this gives C„*=eC„*—~,

as required by Eq. (1). Intermediate cumulants (the
ones with n smaller but not much smaller than no) con-
tain high powers of e and are negligibly small. (The ac-
tual values of the intermediate cumulants should not be
taken too seriously; the point is that the results of Ref. 6
are of an asymptotic nature and do not permit one to ob-
tain the exact values of either the intermediate cumu-
lants or the number no. ) Note that for n=0 Eq. (8) is

satisfied by an arbitrary constant c. It is convenient to
use this freedom and to choose c =t. . With this choice
the recursion relation for C„* can be used starting from
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n = 1 (the averaged conductance then is C i
cE' = E

which is indeed the correct result). Since, however, the
zero-order cumulant Co must be equal to zero (normali-
zation), one should remember to subtract at the end the
constant t. from the cumulant generating function.

(ii) The second step is to multiply Eq. (8) by
( —k) "/n! and sum over n T. his leads to the following
equation for the cumulant generating function G(k)
=P„(—) ) "C„/n! [recall the remark following Eq. (7)]:

t)G zt) G 8G
ag t)y z ti)

—(2- e)X -26.G . (9)

Equation (11) is the main result of this Letter and it
tells us that P*(g) is an absolutely universal function
which depends only on N= I/e. The integral can be
evaluated, approximately, for different regions of g. It
turns out that for g near its average value g =N the dis-
tribution is nearly Gaussian, with a width (hg ) = 1:

P*(g) = (I/J2z)exp[ ——.
'

(g N) ], —

ig N
i
( (N[nN ) '—

(12)

For larger g, namely when g —N)&(N[nN), P*(g)
crosses over from Gaussian shape to a power law
P*(g) =A~g ' where the coefficient Aq =N 2 ~/

(2N —1)!. It is this power-law decay that leads to diver-

gent moments for n) 2N —1. Finally, it follows from
Eqs. (10) and (11) that P*(g) has a term
exp( N)6(g); i.e., a small b—ut finite fraction of the
mobility edge ensemble (for L ~ ) corresponds to
strictly insulating samples.

Note in conclusion: (i) Using the cumulants calculat-
ed by Altshuler, Kravtsov, and Lerner, it was possible to

This equation contains all the information about the
evolution of the cumulant generating function and, thus,
of the conductance distribution, under change of the sys-
tem size L.

Below I consider only the limiting solution of Eq. (9)
which is obtained by equating the right-hand side to zero
and solving the resulting ordinary diA'erential equation.
After subtracting the constant e one ends up with the
following result for the cumulant generating function
G*(X) in the limit L

2
G*(A, ) =2 +'

A, Kz~(242K. ) —N (10)
(2N —1)!

where K is a modified Bessel function and it was as-
sumed, for simplicity that I/e=N is integer. One can
check, by direct differentiation of G*(X) at A. =O, that
Eq. (10) reproduces correctly the low-order cumulants
C„* (for n ( 2N —1), whereas the high-order cumulants
(n & 2N —1) diverge. The limiting distribution P*(g) is

given by the inverse Laplace transform

l r+i
P*(g) = . exp[G*(X)+gz]dh.

obtain the limiting distribution P*(g) for an ensemble of
samples at the mobility edge, in the I ~ limit. In

spite of the fact that high-order cumulants are non-
universal (e.g. , depend on the mean free path I) and
grow indefinitely with I., the limiting distribution P*(g)
is absolutely universal and depends only on dimensionali-

ty. Let us emphasize, however, that the problem of
finding the distribution from the cumulants given by Eq.
(I) is mathematically not well posed (for i. & I), so that
certain plausible arguments were involved in going from
cumulants to the distribution. (ii) Limiting distributions
exist also away from the mobility edge: On the metallic
side of the transition the conductance distribution Pt (g),
for large I., approaches a Gaussian, while on the insulat-

ing side there are strong reasons to believe that the dis-
tribution for the variable x=lng approaches a Gaussian
shape. (iii) In the context of renormalization and
scaling one can say that any initial (bare) distribution

Po(g) renormalizes (or scales) towards one of the three
limiting distributions: metal, insulator, or the mobility

edge distribution. The first two correspond to the trivial
fixed points of the theory, whereas the mobility edge dis-
tribution P*(g) describes the nontrivial fixed point. Let
us emphasize that, even though the distribution as a
whole is renormalizable, the set of moments of the distri-
bution is not renormalizable. Thus, the moments (or
cumulants) are not "good" scaling variables and do not
reveal the universality of the problem (for a detailed dis-

cussion and relation to scaling see Refs. 5 and 7)." (iv)
The calculations have been limited to the case when the
local disorder was weak. Therefore the distribution
P*(g) at the mobility edge could be studied only in 2+ e

dimensions. It is not clear to which extent the extrapola-
tion to a=1 is valid.
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