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Solitons in Chiral-Spin Liquids
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We consider the low-lying states of a class of tight-binding models related to the parity- and time-
reversal-breaking chiral-spin liquid, which describes a magnetically frustrated Mott insulator. In pre-
cise analogy with the soliton excitations of polyacetylene, the presence of a midgap state bound to topo-
logical disruptions of the chiral order leads to neutral, spin- 2 spinons and charge-e, spinless holons.

PACS numbers: 71.30.+h, 75.10.Jm

"Resonating-valence-bond" (RVB) or "spin-liquid"
scenarios for high-temperature superconductivity center
on hypothesized Mott insulators composed of locally
singlet-paired spins or "valence bonds. "' Upon doping,
it is supposed that these pairs maintain their integrity,
and condense into a charge-2e superconductor. It has
been argued ' that RVB insulators should support
quasiparticles with reversed charge-spin relations: a
spin-2, neutral "spinon" which is simply an unpaired
spin immersed in the sea of paired spins, and a spinless,
charge-e "holon" which is an unoccupied site amid the
singlet fluid. Using this language, one hopes to develop a
theory of the superconducting state as a dilute gas of
holons which is complementary to a BCS-like description
in terms of a dense fluid of paired electrons.

How can we reconcile this suggestion with the experi-
mental fact that the undoped progenitors of high-
temperature superconductivity display conventional Neel
order? The answer lies in the fate of this order upon
doping. With only a few percent charge carriers, the
spin-correlation length plummets to a few lattice spac-
ings. Only then does superconductivity emerge, after
long-range antiferromagnetic order has been obliterated.
In addressing the nature of a Mott-insulator to supercon-
ductor transition, it therefore seems simplest to consider
those Mott insulators whose spin correlations resemble
the short-range correlations of a (gapped) singlet super-
conductor. The physical superconducting state can then
be studied theoretically by turning on frustrating interac-
tions, doping the resulting spin liquid, and finally turning
oA' the artificially added frustration.

We consider here the low-lying spin- and charge-
carrying excitations of an insulating spin liquid by study-
ing the ground and relevant low-lying states of tight-
binding models related to the parity- and time-
reversal-breaking "chiral state. " It is argued that these
states may be closely related to low-lying states of
moderately frustrated Heisenberg models. We then
present numerical evidence which supports the existence
of spinons and holons, and discuss their interactions.

Local gauge symmetry and Mot t insulators. —In
terms of the underlying fermionic degrees of freedom,
Mott insulators possess a local U(1) gauge symmetry,
since for energies small compared with the charge gap,
the particle number on each site is conserved. Formally,

a local gauge transformation c,', exp(iA, )c;, simply
multiplies every state in the singly occupied Hilbert
space by the same overall phase factor exp(ig;A;) and
therefore leaves all spin observables unchanged. AfBeck
and Marston have proposed a mean-field theory which
respects this gauge symmetry by reminding us that anti-
ferromagnetic exchange arises from a virtual hop from
site i to j and back again, viz. ,

—2J„(c;,c,.)(c,pc;it)
This expression pleads for the introduction of the com-
plex link variables g„=( Jt/2)(c, ,c;,) and the corre-
sponding mean-field Hamiltonian

. 2

&MF = g + g tg, c;,c,,+ H.c.I . (1)
(i,g) Jig (&,j )

From the definition of g;, we see that under a gauge
transformation this eA'ective hopping-matrix element ac-
quires a phase factor exp[i(At —A;)], so that Eq. (1) is

gauge invariant. The mean-field ground state is obtained
by minimizing )VMF with respect to the g,~.

In general, i"YMF is minimized by states with nonzero

g;, only on isolated links of the lattice. The hypothesized
spin liquids, however, are translationally invariant. In a
mean-field approximation, such states can be stabilized
by the introduction of a biquadratic interaction, which
suppresses fluctuations of the magnitude ~g;, ~. Alter-
nately one may disregard these fluctuations by fiat, fixing

~g„~ and allowing only the phases of g;, to vary. Either
way, the Gutzwiller projections of these half-filled Slater
determinants yield excellent variational energies' (and
therefore accurately describe short-range correlations)
when the "flux" through every elementary plaquette ijkl
is n, i.e., when g,~g~l, g&Igl, is negative. On a square lat-
tice with diagonal (frustrating) interactions, the optimal
state (with uniform ~g;~~) is the chiral state, with flux
tr/2 through each elementary triangle.

4 weak-coupling approach. —In dealing with strongly
interacting systems, one often relies on the principle of
adiabatic continuity —the low-energy, long-wavelength
properties of a system can be studied by tuning parame-
ters to a more felicitous set of couplings as long as a
phase boundary is not encountered. An instructive ex-
ample of such a sequence of models is the half-filled,
square-lattice Hubbard model with nearest-neighbor
hopping. '' In the small-Hubbard-U limit, this system is
a commensurate spin-density-wave insulator, with an ex-
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'
sin(4„1,)S;.S, XSq,

U
(3)

where @,ji, p„+p,i, +p——i,; is the flux through triangle
ijk. These terms vanish in the Mott limit, but may act
as infinitesimal symmetry-breaking fields if the ground
state of the corresponding frustrated Heisenberg model
breaks time reversal or parity.

Of course, exhibiting a continuous family of models
does not ensure that the corresponding states will vary
smoothly, since a phase transition could intervene. One
prerequisite for the absence of a phase transition be-
tween the large- and small-U limits is that (a) both lim-

iting states must have the same symmetry. For example,
weakly frustrated square-lattice antiferromagnets are
thought to have Neel-ordered ground states, so that we

cannot expect the (paramagnetic) ground states of tight-
binding models (2) with weak second-neighbor hopping
to continue smoothly as U is increased. A second re-
quirement for continuity between a small-U state and a
Mott insulator is that (b) the small-U state must be lo-

cally neutral with a gap to charged excitations. This

ponentially small charge gap. In the opposite large-
Hubbard-U limit, charged excitations can be formally
eliminated, resulting in a Heisenberg antiferromagnet.
In both cases, the ground-state density correlations de-

cay exponentially, and the low-energy, long-wavelength
excitations are gapless antiferromagnons. Despite the
apparent conceptual diAerence between a commensurate
spin-density-wave insulator (whose charge gap is due to
a doubled unit cell), and a Neel-ordered Mott insulator
(whose gap is generally viewed as a many-body eff'ect),
there appears to be no phase boundary separating them.

Encouraged by the success of the weak-coupling ap-
proach to Neel-ordered insulators, we may ask if there
exist tight-binding models whose ground and low-lying
states smoothly interpolate from Slater determinants to
spin-liquid states as repulsive interactions are turned on.
In particular, we consider the extended Hubbard model
in an arbitrary magnetic field,

P = —g (T„e"c;,c„+H.c.)+Up —, n;(n, —
1 ), (2)

(l,J )

where n; =g,c,',c„is the particle number at site i, the
T,~ are real and positive, and hopping is not limited to
nearest neighbors. At half filling in the large-U limit, for
any choice of link phases fp,iI, this Hubbard model ap-
proaches a frustrated Heisenberg model in which the ra-
tios J;~/JI, I are simply (T;j/Tl, i) . Each set of link phases
then provides us with a one-parameter family of Hamil-
tonians which interpolates between a soluble (U=0)
model and an intractable spin model. Sufficiently clever
choices of phases may then allow us to infer properties of
the large-U state from a careful study of tight-binding
models. Note that for large but not infinite U, the
eA'ective Heisenberg model generically contains three-
spin interactions,

condition ensures that a metal-insulator transition does
not interrupt the continuation process.

Which link phases p„are most likely to permit con-
tinuation from a (paramagnetic) Slater determinant to a
translationally invariant Mott insulator? The similarity
between the generalized Hubbard model (2) and the
mean-field theory (I) suggests distributions of flux which

correspond to mean-field solutions with uniform magni-
tudes ~g;~~. The corresponding Slater determinant will

then have spin correlations which should closely resem-
ble those of its large-U cousin, facilitating a smooth in-

terpolation between the two states. We also require a
single-particle gap at U=O, to satisfy condition (b). To
obtain a translationally invariant insulator, we further
demand that the charge density be uniform and that the
current on each link vanish. This latter condition is sim-

ply the statement that the expectation value of the Ham-
iltonian is stationary with respect to varying the link

phases, which is automatically satisfied by choosing
fluxes corresponding to a uniform-amplitude mean-field
state.

On the two-dimensional square lattice with first- and
second-neighbor hoppings T~ and T~, we will consider
flux z/2 per triangle and n per plaquette, corresponding
to the chiral state. By condition (a), we will therefore be
considering the continuation of this U =0 state to a Mott
insulator which breaks time reversal and parity. This
state has a single-particle gap which, as in the case of a
commensurate spin-density wave, has a simple single-
particle interpretation: The presence of z flux per pla-
quette doubles the (magnetic) unit cell, and opens a
"chiral gap" for nonzero second-neighbor hopping. In
what follows, we will assume that (for sufficient frustra-
tion) this choice of phases permits a smooth interpolation
of the ground state and certain simple low-lying states
between large and small U. We will argue further that
flux patterns in which the flux per triangle is rr/2 almost
everywhere describe Slater determinants which are con-
tinuously related to interesting excited states of the
chiral-spin liquid, namely, holons and spinons. The stat-
ic interactions (but neither the dynamics nor the statis-
tics) of the excitations can then be inferred from simple
tight-binding calculations, which we carry out on lattices
of order of 200 sites. Before discussing these results, we

present some simple heuristic arguments based on the
minimization of (2) with respect to the link phases.

Some simple arguments. —Let us consider the simple

system consisting of I. noninteracting electrons on an I-
site loop through which a variable flux 4 is passed.
What value of @ minimizes the total energy of the sys-
tem? There are three cases to consider: When L is

6, 10, 14, . . . , the minimum energy occurs at N =0.
When I. is a multiple of 4, the energy of the ioop can be
lowered by opening a gap at the Fermi level, and the
lowest energy corresponds to @=a. The same considera-
tions imply that the optimal flux for odd L is ~ zc/2. On
the full lattice, the problem of the optimal flux distribu-
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tion is considerably more complicated, but the loop para-
digm (and perhaps more than a little hindsight) suggests
that we satisfy the shortest loops on the lattice. These
short loops (i.e., triangles and quadrilaterals) presum-
ably dominate the energetics of the lattice problem, since
longer loops will overlap, and the energetic gains and
costs from motion along these closed paths will interfere
and largely cancel one another. Detailed calculations
have confirmed these heuristic "rules" on a wide variety
of lattices. '-'

The loop argument provides us with simple caricatures
of the spinon and holon. For simplicity, consider a tri-
angular lattice with nearest-neighbor hopping and the
optimal flux of tr/2 per triangle. (Extensions to other
lattices are trivial. ) To consider static charged excita-
tions, we eliminate one site, x. Following the loop rules,
we should readjust the fluxes to satisfy the shortest loops
in the mutilated lattice. Far from x no adjustment is

needed, but the triangles which previously included x
have been eliminated; the shortest closed path involving
the neighborhood of x is now the hexagon surrounding it.
Originally, this hexagon was composed of six elementary
triangles, and therefore enclosed a net flux of 6&&(tr/2)

Our heuristic arguments suggest, ho~ever, that
after x has been removed the flux through this hexagon
should vanish. We now have a simple caricature of a
static holon —a vacant site accompanied by an excess
flux of z. If we restore the missing site as well as the
electron which occupies it at half filling, the result is a
spinon. The corresponding construction works equally
well on a square lattice, as discussed in detail below.

A simple topological argument also suggests a connec-
tion between spin T and an excess flux tr in a chiral-spin

liquid, by an extension of Laughlin's argument for the
existence of spinons. Consider a two-dimensional spin
liquid with periodic boundary conditions in both direc-
tions, covering a torus. Since the torus is closed and

orientable, the net flux passing through it is necessarily a
multiple of 2tt. On an even-site lattice, the local energet-
ic preference for a flux of z through each plaquette is

compatible with this global constraint. On an odd-site
lattice, however, the topological constraint forces the sys-
tem to accept an additional half-flux quantum over and
above the energetically preferred flux. The odd-site insu-

lator must also have a half-odd-integer total spin, since it
contains an odd number of electrons. We show below
that the excess spin and flux indeed bind to form a spi-
non.

Charge-conjugation symmetry. —The full lattice
Hamiltonian (2) has charge-conjugation symmetry if
each elementary triangle has flux +'tr/2, regardless of
the hopping magnitudes IT;, I. For then a gauge can be
found such that the inlersublattice hopping-matrix ele-
ments are purely real while the intrasublattice hopping-
matrix elements are purely imaginary. One then easily
verifies that the tight-binding part of (2) anticommutes
with the antilinear conjugation operator Y which is the
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composition of time reversal and a momentum boost by

g =(~,~):

~X y; Ii) =Z p,
*e'~ "Itl (4)

Consequently, every single-particle eigenstate 0' with en-

ergy E has a conjugate eigenstate Y+ with energy —E.
This symmetry depends only on the phases p„and not on
the hopping magnitudes T;i, and therefore applies to any
lattice which can be considered a sublattice of a square
(or hypercubic) lattice with +' tr/2 Aux per triangle, such
as a triangular lattice with flux + tr/2 per triangle, a Ka-
gome lattice with flux ~ tr/2 per triangle and Aux 0 or tr

per hexagon, etc. The (U=O) ground states of these
models are obtained by filling the lower half of the spec-
trum. Since charge density (measured from half filling)
and current are charge-conjugation odd, expectation
values of these operators vanish in the ground state, as
required in an insulator. A many-body charge-con-
jugation operator can also be defined ' for nonzero
values of U.

The chiral state The .o—nly translationally invariant,
fully gapped state which satisfies the loop rules is the
chiral state, with Aux tr/2 per elementary triangle and tr

per plaquette. This state breaks parity and time reversal,
since under either of these operations tr/2 flux is trans-
formed into —tr/2 flux. The spin- and charge-
correlation lengths in the U=O chiral state are equal,
with both roughly the larger of I

T i/T q I
and

I T2/T i I.
The chiral state possesses spin-l, momentum (tr, z),

particle-hole excitations corresponding to the transfer of
an electron from an occupied lower band state %' to its
upper band conjugate Y%', with a spin flip. The resulting
exciton is neutral (by conjugation symmetry) and has a
U=O excitation energy equal to the chiral gap. We
know that for small T2/Ti (corresponding to small Jq/Jl
in the large-U limit) the U=O chiral state cannot contin-
ue smoothly to the large-U ground state of (2), since
weak frustration does not destroy Neel order. As U is

increased from zero in this regime, one therefore expects
a critical U, (of order of the chiral gap) above which
long-range Neel order appears and the gap to spin-1 ex-
citations collapses, as required by Goldstone's theorem.
We now show that for U=O and moderate Tt/Ti the
spin-1 exciton is unstable to decay into two spin- 2 soli-
ton excitations. This qualitative change in the nature of
the low-lying spin excitations removes the natural mech-
anism for a transition to Neel order at large U.

Inhomogeneous states and spinons. —As noted above,
it is impossible to construct a translationally invariant
flux distribution which satisfies the loop rules on a
periodic, odd-site lattice. The flux pattern which violates
the fewest loop rules has flux z/2 through every triangle
except for one "defective" triangle, which has flux
—n/2, i.e., an additional half-flux quantum tr passing
through it. (This forces one plaquette to have no flux,
violating the loop rules. ) Numerically we find a spec-
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trum whose density of states is essentially unchanged ex-

cept for the appearance of a single, self-conjugate
"midgap" state localized about the defective triangle.
The half-filled ground state of the odd-site lattice is then
obtained by filling the lower band and occupying the
midgap state with a single electron. In precise analogy
with the Su, Schrieffer, and Heeger' model for the spin
soliton of polyacetylene, the resulting state is locally neu-
tral and has spin —. localized within a spin-correlation
length about the defective triangle. This is the one-
spinon state.

Neutral spin--.' excitations can also be studied on

even-site lattices by considering inhomogeneous chiral
states with t~o defective triangles, each with an excess
half-flux quantum. When these two triangles are far
separated from one another, a conjugate pair of states
appear in the gap. These midgap states are simply the
bonding and antibonding combinations of the single lo-

calized state at each defect. Doubly occupying the bond-

ing state corresponds to a singlet pair of spinons; occupy-
ing both bonding and antibonding states with spin-up
electrons yields the S= =1 component of a triplet spinon
pair.

To address static interactions between spinons we
must compare the energies of states with spinons at
difIerent separations. In the spirit of our approach, we
make the additional assumption that the ordering of lev-

els for diA'erent flux distributions at U =0 will be
preserved upon continuation to the Mott limit. ' In the
singlet channel, one finds numerically that the interac-
tion is attractive at all separations, so that a singlet spi-
non pair will annihilate. In both the singlet and triplet
channels, the energy of a far separated pair of spinons is
found to be simply twice the energy of a single spinon,
confirming that spinons are not confined by a long-range
potential. A qualitative change in the system, however,
occurs for T2/T~ )0.25, when the energy of a triplet spi-
non pair crosses below the energy of the spin-1 exciton of
the uniform chiral state discussed previously. Spinons
then become the lowest-energy spin excitations.

Static holes and holons. —The small-U approach to
Mott insulators is easily extended to encompass static
holes, since these are vacancies in the lattice and local
gauge invariance remains. If we eliminate one site from
an even-by-even lattice, the resulting spectrum possesses
an odd number of states. Charge conjugation then
demands a midgap state, which is localized near the
missing site. When all remaining sites of the lattice are
half filled, the ground state is given by filling the valence
band and singly occupying the midgap state. In this
case, the resulting wave function corresponds to a
charge-e, spin- —,

'
hole (not a holon), with the charge

contributed by the absent site and the spin contributed

by the localized midgap electron.
We may also consider an odd-by-odd lattice with a de-

leted site pierced by an excess half-flux quantum, as sug-
gested by our earlier heuristic arguments. There are
then an even number of states, and hence no midgap lev-

el; the ground state is simply a filled valence band. This
is a holon wave function with charge e and spin 0, the
precise analog of the charged soliton in polyacetylene.

Again assuming that the ordering of levels is main-
tained" between small and large U, we find numerically
that a static hole is more stable than a static, far separat-
ed spinon-holon pair. As in polyacetylene, an energy of
order the chiral gap is needed to separate spin and

charge, but two isolated, static charged solitons are more
stable than two isolated, static holes. Unlike polyacet-
ylene, however, a pair of holons attract one another,
forming a bound state which is indistinguishable from a
two-hole bound singlet pair. It will be argued elsewhere
that a superconductor obtained by Bose condensation of
these pairs has time-reversal- and parity-noninvariant d-
wave symmetry with a full energy gap.
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