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The hierarchy schemes for the fractional quantum Hall effect are reexamined and it is sho~n that
different schemes all give the same lattice of excitations whose statistics is determined by the norm of the
corresponding vector, and hence have equivalent Ginzburg-Landau theories. Similar ideas apply to the
anyon liquid. The schemes can be generalized by using different lattices; many inequivalent states can
be obtained at any filling factor (or value of the statistics parameter).
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Laughlin's wave functions' have won widespread ac-
ceptance as good model wave functions for the fractional
quantum Hall eA'ect (FQHE) at filling factor v=1/q,
but the situation at most other filling factors (with the
exception of those related to 1/q by particle-hole conju-
gation or by filling of lower Landau levels) is somewhat
less clear. Numerous schemes for extending Laughlin's
ideas have been proposed, in particular what I will call
the "standard" hierarchy, a "variant" hierarchy, and
recently a "new" hierarchy. These hierarchies are sup-
ported by diA'erent physical arguments but are alike in

producing a ground state for every fraction v=p/q & 1

such that q is odd, and in having fractionally charged ex-
citations ~e = ~e/q.

Questions about the detailed structure of the excita-
tion spectrum for filling factor v have recently arisen be-
cause of its relevance to gapless excitations of an in-

compressible bulk FQHE state. ' One may ask whether
the hierarchies make equivalent predictions, whether
there are other physically distinct incompressible states
at the same v, and how the Ginzburg-Landau (GL)
theory, for v =1/q, ' can be properly extended to other
fillings. Similar questions may be raised about the

ground states of a liquid of anyons. '"
The main results of this paper are as follows. In-

compressible FQHE systems will be regarded as
equivalent when their filling factors are equal and they
possess excitations whose quantum numbers and statis-
tics correspond. (i) The quantum numbers of the possi-
ble "charged' excitations lie on a lattice of points in r-
dimensional space for r levels of the standard hierarchy.
Excitations of the same physical charge all have the
same (fractional) statistics. All the hierarchy schemes
are equivalent in this sense; diA'erent constructions in-

volve diA'erent bases for the same lattice. This charac-
terizes these systems nonhierarchically. (ii) The order
parameter has r components, and the GL theory also in-

volves r gauge potentials' and its structure is deter-
mined by the same lattice as the excitations. (iii) The
constructions can be generalized further, in a basis-
independent way, by using an arbitrary lattice, subject to
certain rules. This produces other inequivalent states at
any rational v. (iv) Similar observations apply to spin

singlet and partially polarized states, and to states of an

anyon liquid.
I begin by writing the standard hierarchy electron

wave function in the form

Equation (1) describes JV =ltlo electrons at positions
z, =zp; and the integrals are over coordinates of quasi-
particles at level a=1, . . . , r —

1 in the hierarchy; the
system contains Ã, quasiparticles of leve1 a at positionsz„.In the exponents, ao & 0 is odd, a, (tt & 0) is even,
b, ,+1= ~ 1, and b, —1, =0. Negative exponents are un-
conventional; quasiholes in the electron system couple
with b01=1 as usual, but quasielectrons couple with

bp1 = 1. This is an acceptable alternative to the usual
Laughlin quasielectron or other proposals as long as the
singularity at the center is removed by projecting onto
holomorphic (lowest-Landau-level) functions. Such pro-
jection only introduces a short-range interaction into the
eAective many-component Coulomb plasma, described
below. Alternatively, the factors with negative ex-
ponents may be replaced by positive powers of the

!
complex-conjugate factor, times additional exponential
factors. This freedom of choice in the hierarchy wave
functions has no inAuence on the following; the above
form makes the structure especially clear.

In order to work with states like (1), one needs to
make an orthogonality postulate. To take overlaps of
two many-quasiparticle states, one must integrate over
the electron coordinates. One hopes that this makes the
overlap vanish unless the positions of the a =1 quasipar-
ticles in one state nearly coincides with those in the oth-
er. If so, then the integrations in (1) for each state can
be reduced to a single set of integrals for a=1, and the
process can be iterated. For a few well-separated a=1
quasiparticles, this can be demonstrated explicitly, ' and
so should hold for ~a, ~

large. We will assume, as is stan-
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dard, that it also holds for ~a, ~
as small as 2. Then ex-

pectations in (1) behave like those of a multicomponent
generalization of Laughlin's Coulomb plasma.

A homogeneous ground state in the shape of a disk is

obtained if

ao— boi
2
12

q
(3)

ap —
)

Since ap is odd and positive, a„a) 0, are even and of
either sign, and b, ,+~ =+ 1, these give all the standard
fractions; i.e., q is odd and p, q have no common factor.

Strengths of the logarithmic interactions in the
Coulomb plasma resulting from (1) are given by the ele-
ments of

ao boy 0

boi ai bi ~

(G p)= 0 bi2 a2 (4)

ar —
1

Then (2) becomes (neglecting 1 with respect to N, )
r

N~

0
(G,pNp) = (5)

and by inversion of (5)

v = (G ')pp =detG'/detG

by Cramer's rule, where G' is the (r —1) x (r 1) matrix—
with elements G,p'=G, p for a, P )0.

A quasiparticle at z may be obtained by inserting
Q„(z„—z) ' with f, integers into (1). The "fluxes"
(or strictly, vorticities) f, are screened by the general-
ized Coulomb plasma, producing screening "charges"
6N, locally around z,

G,pRVp = f—
Note that the physical electron number RV =SNo but fp
is not the total effective physical flux because the quasi-
particles 6'N constitute a backflow.

The statistics of the excitations can be found by gen-

a, (N, —1)+b, ,+iN, +i+b, i,N, i
=0,

for a =0, . . . , r —1, where N„=O, b —
~ pN —

~

= N~,
and N, is the total physical flux in the area covered by
the disk. Equations (2) state that charge neutrality is
satisfied (including the background N~) —in the mul-

ticomponent Coulomb gas (1). The filling factor is given

by

eralizing the method of Arovas, Schrieffer, and %il-
zcek. ' The phase e' obtained by interchanging two

identical excitations is

0/z = f,—6N,

=f, (G '),pf p =BN,G,pBNp.

Here the direction of interchange is fixed for all v by
demanding that 8/@ =1/q for a quasihole in the Laughlin
state. ' For a charge 8N = ~ 1/q excitation in the stan-
dard hierarchy

0 1

L2br —2, r —
1

bp1

(9)

ar —
I
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which can also be obtained from Halperin's equations.
Some properties of this expression are given elsewhere. '

That (9) is independent of the type of excitation will be
confirmed below.

The same calculation also gives Berry's phase per unit
area due to the effective background magnetic field seen

by the excitation as f,p, =b'—N/2z, where from (5)
p, =.(G '),p/2n are the average densities and so only
excitations with nonzero physical charge see a field,
which is the physical field, as one might have expected.
These excitations therefore have Landau-level-type
spectra, while the neutral excitations are propagating
waves.

The set of possible excitations I(f,)lf, E ZI may be
regarded as lying on an "excitation lattice" A* in a
space lit'. The coordinates f, are the components of each
lattice point in a basis e,*, a =0, . . . , r —1, of A whose
Gram matrix' of scalar products is (G '),p=e,* ep.
Thus 9/z is just the "squared length" (norm) of a vector
in the lattice (not necessarily positive since G ' is not

necessarily positive definite). A transformation e,* e,*'
=S,pep with S having integer matrix elements and
determinant 1 changes the basis from e,* to e,*' but
leaves the structure invariant.

For excitations (f, ) such that (6N, ) are all integers,
one sees that the wave function is that obtained by add-

ing or subtracting electrons or quasiparticles at z. Thus,
as for Laughlin's states, such combinations of fluxes are
equivalent to adding or removing particles. Therefore a
composite operator which adds such fluxes and compen-
sating (quasi)particles has no net charge SN, and exhib-
its long-range order; it is an order parameter. Pure
states, with nonvanishing order-parameter expectations,
are constructed by taking linear combinations of states
of different N with definite phases 0,. Fluctuations in

N, change the quasiparticle distribution at the edge but
leave the filling factor in the bulk unchanged.

The order parameters are in one-to-one correspon-
dence with the integer-charged excitations that they con-
tain, which form an r-dimensional sublattice A of A

which I call the "condensate lattice. "
By (8), the Gram
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+ e"a„.(G -').pa, ,X„,
4n

(10)

where p, v, X =0, 1,2 are space-time indices, the A„are
the physical gauge potentials, A„,are internal gauge po-
tentials, C,"p =rt"'C,$, rt"'=diag(1, —1, —1), and C"
are arbitrary positive-definite matrices. The 0, can be
regarded as coordinates on a torus IR'/2trA* and hence
vortices are labeled by their Ilux fd x V x (A,
+AS, p) =2nf, and (7) and (8) follow from the final
Chem-Simons term in (10). The second term gives the
eA'ective fields.

Hain's first construction used wave functions g„for r
filled Landau levels (LLs):

X(ni+ I/fi) (Zl) (1 1)

where v=(ni+1/ri) ' and ni is even. Even for ri & 1,
(11) has nonzero projection to the lowest LL when

ni & 0, the z's becoming 8/Bz's. The resulting state may
be described in terms of "fictitious LL's" or by saying
that the electrons have been divided into r~ species, each
species having a diflerent number of z factors for each
electron. Thus the wave function is very close in form to
a multicomponent Coulomb plasma (for g, itself we have
r decoupled Coulomb plasmas and so the GL theory for
v=r is r copies of that for v=1). Excitations can be
made by introducing holes into a single fictitious LL (or
inverse powers to obtain quasielectrons). The diA'erent

LL quasiholes are orthogonal in the thermodynamic lim-

it, by a Coulomb-gas calculation, because the large num-
ber of factors of the form (z; —z) act on distinct sets of
particles. In fact, such arguments show' that the sys-
tem exhibits a spontaneous breakdown of permutation
symmetry and one can ignore the antisymmetrization of
electrons among the species. Consequently, the z factors
can be omitted and the system behaves just as an r | com-
ponent Coulomb plasma, in which the Gram matrix G
clearly has diagonal elements n~+1 and oA-diagonal n~.
These entries refer to a basis e for A of equally charged
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matrix of A is 6, so all scalar products of vectors in A

are integers; i.e., A is an integral lattice. A is the dual
lattice of A since it has the inverse Gram matrix, ' and
becomes an integral lattice if rescaled by vq = JdetG.
The sublattice A consisting of vectors of A having zero
physical charge (8/V=RVp=0 in the original basis) has
Gram matrix G'. A is an even lattice (norms of these
vectors are even because a, are even for a & 0), and so
these excitations have Bose statistics. It is easy to show
from the form of (4) that they exhaust the neutral exci-
tations, i.e. , (A*) =A, and hence that in the standard
hierarchy the statistics of an excitation depends only on

its charge BN.
These results imply that the form of the GL action

must be S =fd'x dt L, with

L = —, (8„8,—A„S,o —A„,)C,p (8„8p—A, ,Sp p
—A, .p)

+p (rlp8 Apb' p Ap )

excitations 6'N = —
1 so the basis order parameters con-

sist of one added electron and one of the flux cornbina-
tions e, .

To make contact with the standard hierarchy, I now
change basis. As the first basis vector take eo which has
norm n t

+ 1. For the remainder take e,' =e, —e, —~,

a=I, . . . , r —1, which have 6N=0 and norm 2. The
ofl-diagonal scalar products give —

1 for adjacent
members of the sequence and zero otherwise. The new
Gram matrix is therefore tridiagonal like (4), proving
that quantum numbers and statistics of excitations are
the same as those of the standard hierarchy at the same
filling factor (as can also be shown by direct calculation
of A*). A is here the root lattice A„—i of SU(r), ' and
the r species behave as the fundamental representation of
this group, though there is no reason why the Hamiltoni-
an should respect all of this symmetry.

Another set of filling factors v=(ni ri ), ri & 1,
is obtained using the conjugate of g„in (11), or powers
ni —1, ni in the Coulomb plasma, and leads in the
hierarchy basis to —2 in place of 2 in G; SU(r) "sym-
metry" is still present. Jain has emphasized that these
two families include most of the experimentally observed
filling factors.

Given a state g, ,, a new filling factor is obtained by
adding electrons in new fictitious LLs and then attaching
flux to all the particles:

z -z =(z»"z, +, , (12)
where n is even and v' = ln + 1/(r + v) ] ', giving a
"new" hierarchy of states labeled by sequences n~, r~, n2,
r2, . . . , nt„rt, for k steps. Once again there is a basis for
A of SiV = —

1 excitations, one for each of the r =g,"=
i r,

species. Now take co to be one of the last set of rq

fluxes, and the e,' to be diA'erences of the BN= —
1 basis

vectors, working back down the hierarchy. The resulting
tridiagonal Gram matrix has diagonal nt, + I, 2 (rt, —

1

times), nt, —i+2, 2 (rt, i
—

1 times), . . . , 2, and oA'-

diagonal elements —1, which is the standard hierarchy
form (4). Including negative entries in ni, . . . , rt, gives
all the standard hierarchy states.

The variant hierarchy is sufFiciently similar to the
standard one not to require separate discussion here; it
again produces the same lattices A* of excitations.

The hierarchy construction can be generalized by tak-
ing an arbitrary Gram matrix G, whose matrix elements
specify a ground state as in (1). In this basis, Gpp must
be odd because of Fermi statistics, and the other diago-
nal elements even, and so A is even. Inequivalent lat-
tices give inequivalent FQH states. Then v-p/q where

q =detG and p =detG' may have common factors. Note
that v need not have odd denominator. Equations (5),
(7), (8), and (10) continue to hold. This very large set
of possible states is just those having a basis of order pa-
rameters containing a single electron since a basis for A
of 6IV = —

1 (or a Jain-type construction) can always be
obtained. An elegant example is obtained by replacing
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G' by the Gram matrix of D, —i, the root lattice of
SO(2(r —I )), ' r ) 4. Taking Goo =m, odd and de-

pending on how G' is extended to G, one can obtain
v= 1/(m —1)or v= 1/(m —2), and so reproduce v= 1/q
but with a lattice of dimension r.

States with some or all of the spins of the electrons re-
versed can be handled similarly; one of the 6'Ã, is
identified as ltS'. As examples, Halperin's v=2/(2n
+ I) spin-singlet states' have the same lattice struc-
ture' as Jain's construction (11) for ri =2, while a sing-
let state proposed by Jain for v= —,

'
is equivalent to that

in Ref. 20.
The present results should shed light on the fractional-

ly charged edge excitations. Also, on surfaces of non-

trivial topology, like the torus, general principles' imply
a ground-state degeneracy ' in the thermodynamic limit,
the degeneracy being given by a factor iA*/Ai
=detG=q for each "handle. " For the hierarchy states,
p, q have no common factors, so this is just the minimal
degeneracy q for the torus found by Haldane.

The hierarchy for the anyon liquid' parallels that for
the FQHE for bosons (for which A is even) with the
statistics parameter a, =8/tr playing the role of v; I find

that the space of order parameters is r+ I dimensional
for an r-level fraction.

In conclusion, I have shown the existence of previously
unnoticed structure in the hierarchy schemes which
characterizes these states completely at the GL level.
This classifies all states having only single-electron con-
densates.
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