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We calculate the collective-mode spectrum for a layered superconductor structure. We find that for
wave vectors directed close to the direction of the superlattice axis, the plasmon mode remains belo~ the
superconducting gap edge (i.e., the Anderson-Higgs mechanism does not give rise to a massive collective
mode as it does in the bulk three-dimensional system). We also find a clear signature of superconduc-
tivity in the form of a unique line splitting in the collective-mode spectrum as the plasmon crosses the su-

perconducting gap. Experimental implications are discussed.

PACS numbers: 74.30.Gn, 71.45.Gm, 74.70.Jm

The discovery of high-T, superconductors has inspired

a tremendous amount of research on how the structure of
these materials affects their properties. ' These systems

generally have a pronounced layered structure; the con-

ducting layers of the system are so well separated that
the tunneling between them is small. For example, a re-

cent experiment' on the bismuth-based compounds yield-

ed a ratio of 3 x 10 for the in-plane to interplane
effective masses. In this work, we investigate how the

layered structure affects the collective-mode spectrum of
a superconductor. Since there is at present no consensus
as to the mechanism of pairing in high-T, materials, we

will work in the BCS approximation, at T=0, using the
s-wave pairing. Our model is thus a periodic multilayer
superlattice in the z direction composed of superconduct-

ing layers in the x-y plane. This work is also directly
relevant to artificially made superconducting superlat-
tices.

In what follows, we will show that if one ignores tun-

neling between layers in this type of superconductor, it

necessarily follows that there are collective modes whose

energy may be smaller than the gap, 2h. This result

contrasts with the situation in an isotropic three-
dirnen sion al superconductor, for which the plasmon

modes have energies on the order of the plasma frequen-

cy co„=(4tre p/m) '1, where p is the electron density, so

that the plasmon lies well above the gap (typically
to~-eV and 2h-meV). In fact, it is generally believed

that there are no excitations whose energy is smaller
than 2A for a clean, isotropic (s-wave) BCS supercon-
ductor.

In addition, we find that the electromagnetic response
of the layered superconductor has very unusual behavior
when the wave vector is increased such that the
collective-mode energy is pushed above the gap. Spe-
cifically, there is a line splitting in the absorptive part of
the dielectric function just as the plasmon mode crosses
the gap. This line splitting may be attributed to mixing

by the Coulomb interaction of pair-breaking excitations
and the collective sound mode associated with the long-

range phase coherence of a superconductor. The eAect is

unique to this system: It requires the presence of a gap
(and hence does not appear in normal superlattice sys-
tems), but does not occur in isotropic superconductors
because of their screening properties. This line splitting
allows one, in principle, to unambiguously determine the
gap of this system directly from the collective-mode
spectrum.

The question of whether one can observe excitations
inside the gap in a superconductor has enjoyed a good
dea1 of attention for many years. The problem may
be briefly stated as follows: In a neutral superfluid, one
has a sound mode with velocity vp=t'F/v 3 in three di-

mensions, where vF is the Fermi velocity. %hen one in-

troduces the Coulomb interaction in a charged system,
the mode is pushed out of the gap, to essentially the plas-
ma frequency, by the Anderson-Higgs mechanism.
This behavior in fact arises from the detailed form of the
Coulomb interaction in three dimensions (4tre /q ) at
small q. In some sense, then, the fact that a mode does
not appear in the gap for a superconductor is a question
of detail rather than of physical necessity. Indeed, this
observation led Belitz et al. to investigate the possibility
of finding modes in the gap for dirty superconductors, for
which the disorder eA'ectively changes the Coulomb in-
teraction. They found, however, that the acoustic modes
did not remain in the gap, even in the limit of very strong
disorder. In contrast, for the superlattice, due to the lay-
ered structure the eA'ective Coulomb interaction is

softer, and allows the sound mode to remain in the gap
when kii/k ((I, where z is the direction along the super-
lattice and kii is the wave vector along the layers.

To summarize the situations in which there are collec-
tive modes in the gap, one may draw a "phase diagram"
in the kiiikplane (as done -in Fig. I). In this work, we

ignore tunneling between planes, so the phase diagram is

periodic in k, and we present data only for 0» k a
~ 2z, where a is the superlattice period. An interesting

consequence of this periodicity is that the plasmon mode
to(k) can in principle enter and leave the gap several
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FIG. 2. Approximation used for the self-energy and the po-
larizability. Dotted line represents contact interaction, wiggly
line represents Coulomb interaction, whereas the double lines
indicate renormalized propagators.

FIG. l. Wave vectors for which the plasmon mode lies in

the gap; the region below the curve indicates where the modes
are present. The diagram is periodic in k-a with period 2z.
Only data for 0 ~ k:a ~ 2n are shown. Material parameters
are the same as in Fig. 3.

times as a function of lkl for a fixed angle 8, if 8 is small

enough.
In this work, we study the density response function

g(k, rp), which may be written in terms of an irreducible
polarizability II(k, ro):

g(k, ro) =11(k,rp)/[1 —i (k)II(k, co)],
where the effective interaction t. contains both the
Coulomb interaction and an attractive short-range in-
teraction ( —Vp) that produces superconductivity,

ia na
i (k) —= ge' *"' d'rti v.o(r~~)e'"" '"

Vo
n

where v„p(r~~) is the interaction between particles in lay-
ers n and 0, separated by a transverse vector r!!, ~ is the
appropriate lattice dielectric constant, and the form fac-
tor

f(k) = sinh(k ~~a)/[cosh(kt~a) —cos(k, a)]

arises from the layering.
Our calculation of the irreducible response function fI

in Eq. (I) follows a gauge-invariant conserving approxi-
mation, ' defined by the diagrams presented in Fig. 2.
Poles of g(k, co) give the collective modes of the system.
Because we neglect interlayer electron-tunneling effects,
the irreducible polarizability H is manifestly diagonal in

the layer index and becomes the corresponding two-
dimensional polarizability, which can be calculated by
summing the ladder diagrams. We find for h, k~~/2m

«EF [note that EF is the two-dimensional Fermi energy
and II(k, co)—=H(ki, ro) because of the absence of inter-
layer tunneling]

f(k) —Vp,
akim

Vp[coG(k, rp)]'
C(k, ro) = —iF+(k, rp)+

1 iVpF (k, ro) '—

(2) fI(k, rp) =2C(k, co) [1 —VpC(k((, rp)]

where

(3)

(4)

d q
—Eq+Eq — 5 eq+eq-

(2ir) ' 4Eq+Eq Eq — Eq + +i6 (s)

d ~ 1G= —i„ (2z) 2 4Eq+Eq ro Eq Eq++ib—
1

co+ E~++Eq ——i6

!q+ =Iq+ 2 kl. Eq+ =(A'+eq+)'i', and eq+ =q+/
2m —EF. The real parts of F~ and 6 may be written
down explicitly in terms of elliptic integrals; we can then
numerically obtain the imaginary parts by performing
Kramers-Kronig transforms on these. In this way, one
obtains 11(k,co) and g(k, rp) over a large range of values
for k and co. We have performed this calculation, and
will report the details of these results elsewhere. ' We
first need to show that there can be collective modes with

energy co &2h even when screening is included. To-

m v p'k i~i/2
H(kpr CO)—

(m Vo/2n+ 1)vF k (f/2 —rii
(7)

There is a pole in the irreducible polarizability at

wards this end, we perform an expansion of Eqs. (3)-(6)
in the parameter vFk~~/A. These expansions turn out to
be well behaved so long as co & 2h, —vrk!!, thus allowing
us to map out the values of k for which co(k) is smaller
than the gap. For co((2h„we obtain after considerable
algebra,
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co=(1/42)tF(l+mVo/2n)' k~~, this is essentially the
acoustic mode one finds for a neutral superfluid, and is

the two-dimensional analog of Anderson's result. To
find the collective modes for the fully interacting system,
we note that these occur when g diverges, or from Eq.
(1), when II(k~I, ro) =1/t (k). This immediately gives the
result

co(k) = 1+ f(k) —
VII

k iI 2rr
(8)

3

For a weak contact potential, the last term may be ig-
nored and Eq. (8) then gives us the acoustic-plasmon
mode which necessarily lies in the gap for kI~ &&k .

To completely map out the poles inside the gap, we

evaluate Eqs. (5) and (6) in the small-k~I limit without
assuming m is small; the resulting expansion is well

behaved for ro (2h. (The explicit expressions are quite
lengthy, and are omitted for brevity. ) In Fig. 3, we

present ro(k)/5 as a function of k for several fixed angles
8 =arctan(k Ii/k, ). The parameters of the system are
chosen to roughly model a high-T, compound. Specif-
ically, we have taken a =10 A, n, =10' cm as the
sheet density, eAective in-plane mass m* =5mo, lattice
dielectric constant x =4, and for the order parameter, we

use the BCS form 5=1 76kttT„.with T, =125 K. We
see that as 8 increases, the plasmon mode is pushed out
of the gap. To illustrate this explicitly, we have plotted
several points for aI(k)-25, as obtained by direct nu-

merical integration of Eqs. (5) and (6); it is clear that
the frequency of the plasmon mode is well behaved as
the gap edge is crossed. For the above parameters, one
finds that there are no subgap plasmon modes for 8 & 6'.

We note also that because t (k) is periodic in k.-, the
plasmon frequency ro(k) for a given angle 8 may in prin-
ciple enter and leave the gap several times as a function
of LkL; we find, however, that the angles necessary to
achieve this are quite small.

It is also interesting to observe how the density
response function behaves as the wave vector is increased
(at fixed angle) such that the plasmon mode exits the

gap. In Fig. 4 we plot the absorptive part of the response
function (Imp) for 8=5.7' and three values of k, as a
function of unitless frequency, ro/A. [These results were
obtained by direct numerical integration of Eqs. (5) and
(6). Details will be given elsewhere. 'o] For ka (2.82,
there is still a sharply defined plasmon mode below 2h;
as the wave vector is increased beyond this threshold, one
gets mixing between the collective mode and the pair-
breaking excitations above 24. The line shape of this
mixed mode takes on a double-peaked form; the lower of
these two peaks is maximum at the gap edge 2h, while

the upper peak position moves to higher frequencies with

increasing k. For larger values of k, the lower-frequency
peak has very little oscillator strength, and one can only
distinguish the upper mode.

The origin of this line splitting is somewhat subtle, and
requires a detailed examination of the density response
function in the absence of Coulomb interactions, II(kII,
aI). One can show' that II must have Van Hove singu-
larity cusps at ro =2k and ro = (4h + vF kI~ ) '/ due to the
available phase space for pair-breaking excitations at a
given co and kII. These cusps can only be seen on a very
fine scale in II(k~I, ro) because the oscillator strength of
the plasmon mode overwhelms that of the pair-breaking
excitations at small wave vectors. However, when one
introduces the Coulomb interaction, the near vanishing
denominator in Eq. (1) as the plasmon pole crosses the
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FIG. 3. Plasmon dispersion ru(k)/A. Solid lines are ob-
tained using expansions in rFkii/A for, curve a, 8=0.01, curve
b, 8=0.05, and curve c, 9=0.1 rad. All other points are ob-
tained by direct numerical integration of Eqs. (5) and (6); cir-
cles are for 8=0.1, crosses for 0=0.05, and triangles for
0 =0.01 rad. Material parameters are chosen such that
n, =1.0X10' cm, m*=5mo, k =4, and T, =125 K.
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FIG. 4. Absorptive part of dielectric response as a function
of unitless frequency, ro/6, in units of m/ft '. Material parame-
ters as in Fig. 3, 8=0. 1 rad, and (a) ka =2.8 (sharp line repre-
sents a 6 function at the position of the plasmon pole), (b)
ka =3.15, and (c) ka =3.5.
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gap acts as a huge amplification factor for this structure
in H, allowing the unusual behavior seen in Fig. 4. This
structure is unique to layered superconduc. tors: One
must have a gap in the spectrum to get the cusped be-
havior, but in isotropic superconductors, the Coulomb
screening is so strong that the plasmon mode is pushed
far above the gap edge, so that this structure does not
occur.

Finally, we note that if one simply follows the position
of the collective mode co(k) as a function of k, it is not
immediately obvious whether one can tell when the gap
edge has been crossed, because the width of the plasmon
pole tends to be quite small even above the gap if k~~ is

small. However, the line splitting shown in Fig. 4 allows
one to determine precisely when the collective mode has
crossed the gap.

We believe that the plasmon modes described in this
work should be observable in both light-scattering ' and
electromagnetic absorption ' experiments. The latter
situation contrasts with the case for plasmons in an iso-

tropic three-dimensional system where light can only
couple to transverse excitations, and plasmons are purely
longitudinal excitations. In our case, the plasmons are
only longitudinal in the sense that Vn, (r~~, t)Ilk~~, ~here
n, (r~~, )ris the local density on a sheet. A light wave may
be polarized such that the projections of the electric field

and k vectors onto the layer planes are parallel, thus al-

lowing them to couple to these modes. A direct observa-
tion of these plasmon modes via an inelastic-light-
scattering experiment ' should also be possible.

Does one expect to see these modes in a real high-T, .

material? There are two major approximations going
into our calculations whose applicability needs to be
evaluated before these questions can be answered. The
first is the assumption that one can ignore tunneling be-
tween layers in these systems; the highly anisotropic
eff'ective-mass ratio seen in these materials suggests that
this is a good approximation. We believe, however, that
whatever the tunneling rate is between layers, this will

set a lower limit on the frequencies of collective excita-
tions of the system. Second, the treatment of the high-

T, materials as s-wave BCS superconductors cannot be
justified at this point, because the pairing mechanism is
still not known. If the pairing is such that there is an
acoustic mode when one ignores the Coulomb interac-
tion, it seems likely that the considerations in this work
would lead one to conclude that, when long-range in-

teractions are included, there will remain collective
modes in the gap. The line splitting in the density
response is a signature of having a superconducting gap
and should exist (in a quantitatively modified form) in

other models of pairing also.
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