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The Lieb-Mattis theorem on the absence of one-dimensional ferromagnetism is extended here from
ground states tp T )0 by proving, inter alia, that M(P, h), the magnetization of a quantum system in a
field h )0, is always less than the pure paramagnetic value Mp(P, h) =tanh(Ph), with P=—l/kT. Our

proof rests on a ne~ formulation in terms of path integrals that holds in any dimension; another of its ap-
plications is that the Nagaoka-Thouless theorem on the Hubbard model also extends to T) 0 in the
sense that M(P, h) exceeds Mp(P, h).

PACS numbers: 75.10.Lp, 05.30.Fk

To many physicists the study of magnetism begins
with a Heisenberg model, or something similar, in which
localized spins interact with each other. Unfortunately,
nature does not present us with such a starting point. In-

stead, at a reasonably (though not absolutely) funda-

mental level, we are presented with the Schrodinger
equation for electrons whose interaction is, to a very

good approximation, spin independent. It is left to the
Pauli principle to induce a spin dependence, and for this
it is essential that the electrons are itinerant, i.e. , not lo-

calized a priori
Given the subtlety of the phenomenon, it is crucial to

elucidate the conditions which encourage or discourage
the emergence of ferromagnetism. Some years ago Lieb
and Mattis' showed that one never gets ferromagnetism
in the ground states of itinerant electrons on a line. The
results presented here include an extension of that earlier
theorem (by a different method) to positive tempera-
tures, and an opposite statement for systems in any di-
mension with a certain parity constraint (requiring
hard core repulsions) —-for which we show that parallel
spin alignments are favored at all temperatures. Exam-
ples of the second kind are one-dimensional systems of
odd numbers of electrons on a ring (i.e., periodic bound-

ary conditions), for which we extend the T=O result of
Herring, and a particular case of the Hubbard model
whose ground state was shown to be ferromagnetic by
Nagaoka and Thouless.

We deal with the following general (spin-independent)
Hamiltonian for N identical, itinerant particles of mass
m(I =1):

tV

H= —(2m) ' g V;+ V(x, x2, . . . , x,q:),

where V is some potential-energy function which is

symmetric in its W variables. Boundary conditions are
stated below. We consider simultaneously (a) the con-
tinuum model (as just stated) and (b) the lattice model
in which the x, 's have integer components and ~- is the

Ep(j+1) )Ep(j) (3)

for all j (N/2. Thus, the "noninteracting" itinerant
system shows a tendency towards antiferromagnetism
(resulting from the Pauli principle, which allows two
electrons to occupy the same one-particle eigenstate of
V only if their spins are antialigned). At T=O and
weak field the magnetization is 0 or l.

The theorem of Lieb and Mattis' states that (3) al-
ways holds in 1 D, even when V&0. Although the
theorem has some practical value for one-dimensional
systems, its main conceptual value lies in the observation
that theories of ferromagnetism based naively on
Heisenberg's "exchange integral" can be misleading
since two-body potentials with either ferromagnetic or
antiferromagnetic exchange integrals can easily be con-

second difference operator.
If the particles are spin- —,

' fermions (e.g. , electrons),
the eigenstates of H can be classified according to the ei-
genvalues (j,s) of the total spin angular momentum
operator J and of 5—the z component (j=N/2,
N/2 —1, . . . , 0 or —,', and ~s~ (j). The eigenvalues of
H depend on j but (for j specified) not on s. The
ground-state energies are denoted by Ep(j). Two simple
benchmarks are the following: (i) Immobile, nonin-

teracting, particles —with m ~ and V =0. In this
limit Ep(j) is independent of j Th. e system is a pure
paramagnet, with spins responding to a magnetic field
independently of each other. (Recall that 5=+a,'/2. )
In a uniform field, h =(0,0,h), the partition function
Z (P, h ) =Tr exp [ P(H —gh o, ) l—satisfies

Z (dg, h )/Z (P, h =0)= (e 'P" ) t, =p = [cosh(Ph ) j

in this limit, and the magnetization is

M(p, h) =d[lnZ(p, h)]/d(Ph) =Ntanh(Ph) . (2)

(ii) Noninteracting itinerant system, with V=O and
0&m (~. The spectrum can be analyzed in terms of
one-particle states, and one finds
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Zs(p;s+1)/Ys (s+1) & Zs(p's)/Ys (s),

Z, (P;1+1)/Y,' '(/+1) & Z, (P;q)/V, ' '(j),
(4)

(5)

for all j and s~ 0. In a field h & 0 the magnetization
satisfies

0 & M(P, h) & N tanh(Ph ) . (6)

Furthermore, there are strictly positive functions Cz,
Cjv —i, C~-4, . . . , Co or C~ (which depend on p but not
on s) such that, for lsl ~ N/2,

Zs(P;s) = g Ck(P)Y5" (s),
i[t =0

(7)

and

Z(P, h) = g C (P)[cosh(Ph)]',
0

where it is understood that Ck —=0 if N —k is odd, and
Y" (s)=0 if k & 2lsl.

Remarks. —(1) Equations (7) and (8) are equivalent.

They assert that, as far as the total spin is concerned, the
thermal equilibrium state is eA'ectively a (positive) su-

perposition of states corresponding to systems of fewer
(k) spins with no interaction.

(2) It is false that the susceptibility g(h)—=p |IM(p,
h)/Bh does not exceed the pure paramagnetic value

Ncosh (ph). By an elementary calculation using (8),
the opposite is always the case for very large h (with the
threshold possibly dependent on N).

(3) Equation (8) is derived below from (13); before
turning to it let us note that (4) and (5), which are not
derivable from each other, follow from (7) by elementa-

ry algebra. To do that, let us first recall that by the
theory of angular momentum, for ls l

~ j,

(8)

Zjs(P j,s) =Zjs(Pj,j ) =Zs(Pj ) Zs(Pj +1)—
=Z, (P;q)/(2q+ 1) .

structed in one dimension.
Equation (3) states that increasing the spin costs

ground-state energy. The first aim of this paper is to

provide similarly precise information about the free ener-

gy when the inverse temperature p is finite. We denote

the partition function with the trace restricted to sub-

spaces with specified values of j, s, or both by ZJs(p,
h;j,s), Zs(p, h;s), and ZJ(p, h;j). When h is omitted, it

is understood to take the value h =0. %e also denote by
YJ's (j,s), YJ (j), and Ys (s), the dimensions of
these spaces for N noninteracting spins. The Y's [see (9)
el seq. ] serve as natural normalization constants for the
Z's [because Eqs. (4) and (5) become equalities in the

pure paramagnetic case].
Theorem I.—Let N spin--, ' fermions have the Hamil-

tonian (1) (with m & ~) in a bounded region [ L,L]—
with Dirichlet (y =0), Neumann (y' =0), or sticky
[y'/y(~L) =k~] boundary conditions (either in the
continuum or on a lattice). Then, for p & ~,

Similar identities hold for YJs (j,s), YJ (j), and

Ys (s), with Ys (s) =N!/(N/2+s)!(N/2 —s)!.
To derive (4) from (7), one needs to establish the

monotonicity in lsl of Ys" (s)/Ys (s), for N —k &0
even. To do that, it is convenient to write this ratio as a
telescopic product, whose factors are the monotone func-
tions

Y (s)/Y + (s) =[(k/2+1) —s ]/(k+2) .

Equation (5) is derived by a similar tactic. Equation (6)
is an elementary consequence of (8).

In Theorem 1 it is assumed that the interaction has no
hard-core repulsion, or other singularities which are
strong enough to induce nodal surfaces in the config-
uration space. The only role of this assumption is to al-
low (4)-(6) to be stated as strict inequalities. For our
second result we let H include such repulsive interac-
tions, which are the sine qua non for the parity restric-
tion which is essential for Theorem 2. The term
"dynamically allowed" refers there to those permuta-
tions that can be achieved by a motion 'of the particles
that does not pass through a nodal surface induced by
the positive divergence of the potential. For example, in

1D permutations are restricted if the interaction includes
a hard-core repulsion which disallows particle en-
counters.

Theorem 2.—Suppose that in a system of N spin- —,
'

fermions with Hamiltonian (I), in arbitrary dimension

and in the continuum or on a lattice, the dynamically al-
lowed permutations are all even and not restricted to the
identity. (This parity requirement can be satisfied only
if H includes a hard core repuls-ion )Then: . (i) Among
the ground states there is one with j=N/2. (ii) In a
field h & 0 the magnetization satisfies

M(P, h ) & N tanh(Ph) .

Z(P, h) = g Dl„l(P)+cosh(Phn, ) (11)
!nl:gn, -tv

for some D l„l (p) ~ 0, with [n} = [n ~, n2, . .} vary. ing over

partitions of N. Dl„l (p) & 0 if and only if there is an al-

lowed permutation whose cycle lengths are n], n2, . . . .
Remarks. —(1) The content of (11) is that as far as

the z-component 5 is concerned, at thermal equilibrium
the system is in a superposition of states in which the
particles form independent "cliques" of sizes n; whose

contribution to S is ~ n;/2 In such a . state the system

shows enhanced response to magnetic fields. In particu-
lar, Eq. (10) [which should be contrasted with (6)] fol-

lows from (11) by writing M(P, h) =E(+jnj
x tanh(phn~ ) ), where E( )is a normalized aver. age
over partitions with weights proportional to D ~„~

x+, cosh(phn, ), and applying the strict monotonicity of
tanh( ). By a similar argument, all the moments (S )
exceed their paramagnetic values. (A similar clique
structure can be inferred for the ferromagnetic Ising
model from the Fortuin-Kasteleyn representation. ) As-
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sertion (i) follows from the uniform bound Zs(P, N/
2)/Z(P) )2, implied by (11).

(2) Two examples to which Theorem 2 applies are the
following: (a) The Hubbard model in the strong-
coupling limit, with one hole on a bipartite lattice. In
this case part (i) [in the stronger sense that Eo(j) is

strictly lowest at j=N/2] was established by Nagaoka
and Thouless. Our contribution is to extend their re-
sult to positive temperatures, in the sense of (10). (b)
Systems of odd numbers N of spin- 2 fermions in a ring,
i.e., in [O,L] with periodic boundary conditions, and a
hard-core repulsion. The dynamically allowed permuta-
tions are powers of the cyclic shift P = (1,2—, . . . , N ),
whose parity equals ( —1) ' =1. Part (i) was proved
in that case by Herring. Herring's and our method also
yield Eo(N/2 —1))Eo(N/2).

(3) Theorem 2 has a very restrictive hypothesis which
is not satisfied in cases of direct physical interest. Its
value lies in two points: (i) the light it sheds on the
mechanism of ferromagnetism; (ii) the construction used
in the proof, which introduces ideas not ordinarily en-
countered in the study of electron correlations, e.g. , the
notion of cliques and the representation (13) which is al-

ways valid regardless of the hypothesis.
We turn now to the proof of (8) and (11), by first

analyzing the Feynman-Kac path-integral representa-
tion' of Tre

fO ~p
Z(p, &) = „p(dco)exp — V(x(r))dr ( —1)'"'

1V

~exp Phoo;
i 1

(12)

Here, co=[(x(t),cr(t)) ~0( t (Pj, which we refer to as
a "path, " represents a trajectory of the N particles, with
x =(xl, . . . , x~), o (cr~, . . . , crlv). Qp is the collection
of paths such that (i) the spins o; (t) = + I are constant
in time, i.e., independent of t; (ii) the particle
configuration at time P is a permutation, n(co), of the
configuration at time zero, with ( —1) " the parity of
that permutation; and (iii) there are no encounters of
particles of equal spin. p(dcu) is a (positive )probabilit-y
measure on Op, determined by just the kinetic com-
ponent of H, which we now describe in more detail for
the two cases considered here.

In the discrete case, with x; taking values on some lat-
tice, the particle trajectories are piecewise constant func-
tions of time, and hop to neighboring sites independently
and at random times. The jumps form a Poisson process,
with the probability p that a specified particle does not
jump during the time interval t E [a,b] given by
exp( —~a

—b ~m).
In the continuum case, p(dcu) is a product of Wiener

measures constrained to satisfy the periodicity require-
ment (ii); i.e., x(t) is a "Brownian bridge" with x, ( )
continuous in time. For the Dirichlet Laplacian the
paths are killed at the boundary; for Neumann they are
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"reflected" (in a sense thoroughly discussed in text-
books).

The third condition is absent a priori, but it is a stan-
dard observation that its inclusion does not aA'ect the
value of the integral. (The proof of this version of the
Pauli exclusion principle can be based on the symmetry
transformation that exchanges the trajectories leading to
the earliest equal-spin encounter. ) A useful implication
for us is that paths in 0p have no triple encounters; this
follows from the other properties of Qp and the fact that
the spins take only two values.

The measure in (12) possesses a hidden symmetry
which we shall uncover. We are going first to define for
each path cu a collection I (co) of loops y. Each loop will
have a winding number w(y). There will be a symmetry
group 9 having 2 elements each of which maps 0 p in a
one-to-one way onto Q p preserving I (cu), p(dcu),
fV(x(t))dt, and ( —1)' . However, g does not
preserve n(cu) and the spin values s =pa;. The values
attained by s within the ensemble of paths related by the
action of 9 are of the form g„«i„&+w(y)/2, with all
the configurations of ~ signs occurring with equal
weights. Symmetrization of the integrand in (12) then
yields the following useful representation:

fO ~p
Z(p, h) = „p(dco)exp — dr V(x(r)) ( —1)' '

cosh [Phw (y) ] .
y e r(co)

(13)

FIG. 1. This collection of particle world lines has two loops
with winding numbers [1,1]. The statistical distribution of s
under the symmetry group is that of two noninteracting spin- —,

'

particles. In dimensions d & 1, and for 1D periodic boundary
conditions, permutations can occur without there being particle
encounters, and then the winding numbers can be larger.

The loops are associated with the space-time picture of
the collection of particle trajectories of the path cu (see
Fig. 1). They are drawn by starting from the t =0 loca-
tion of any of the particles, and tracing the particle's lo-
cation forward in space-time until its first encounter with
another particle; at which point the tracing line switches
to the world line of the other particle in the reversed
orientation in time. Such an orientation switch is repeat-
ed whenever a particle encounter is reached. When the
trace line reaches the time r =0 or P, it reemerges at the
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same location with time treated as periodic. This is con-
tinued until a loop is closed. For each co E Ati the loops
will all have only finite numbers of orientation reversals,
since that number can diverge only if there is a triple en-
counter. We denote the collection of the distinct loops
(y) by I (co), and define w(y) to be the absolute value of
the loop's winding number, i.e., w(y) =

~ J„dt/p~
A path co 6 Qti is completely characterized by three

things: the initial configuration x(0), the union of the
world lines, and the spin assignments along the world
lines. It is evident that consistency with the constraints
(i)-(iii) is achieved if and only if the spin assignment al-
ternates along each loop, as shown in Fig. 1. By this
condition, reading along the t 0 line, the admissible
values of 2s are of the form Z;cr; =Zr F r(ru)

'+ w(y)
We now define the group 0 to have W commuting gen-

erators g;. In the space-time picture the map g, fiips the
spin values (+ —,

' —
—,
' ) along the loop y containing

the t =0 position of the i'th particle. The spin fiip is ac-
companied by the unique rearrangement of particle tra-
jectories needed to maintain the constraints (i)-(iii).
The paths co and g;co differ in the ~ sign attached to
w(y).

To show that g; preserves the parity of tr(co), we note
that tr(g;co) is obtained from tr(co) by a product of trans-
positions associated with the orientation reversals in the
loop y; their number is always even. The invariance of
p(dco) is evident in the lattice case with discrete time
steps. The invariance in the continuum case can be de-
duced by verifying that g; are continuous maps in the
uniform topology of Qti and invoking Donsker's
theorem'' on the weak convergence of the random-walk
measures to the Wiener measure.

Equation (13) (8): Evidently, on a line tr(co) can
only be the identity, and w(y) can only take the values 0
and 1. Then (13) directly implies (8) with Cp(P) given

by the integral in (13) restricted to co's for which the
number of loops with w(y) =1 is exactly k. The strict
positivity is assured by the nonvanishing contributions
from paths m with collisions occurring only within the

first (N —k)/2 pairs of adjacent particles. Q.E.D.
Equation (13) (11): The hard-core repulsion pre-

cludes encounters, so the loops are dynamically simple
but have nontrivial winding numbers, satisfying gw(y)
=IV. Q.E.D.

Finally, we remark that Theorem 1 admits a parasta
tistical extension —as did the ground-state theorem of
Ref. 1.
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