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Fractals and Multifractals in Early-Stage Spinodal Decomposition and Continuous Ordering
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Systems undergoing spinodal decomposition often exhibit an interconnected morphology similar to a
fractal in the early stage. It has been speculated that this early-stage structure is in fact a fractal, In

this Letter I show that the linear theory of spinodal decomposition does indeed predict that the early-
stage morphology is fractal and, in addition, has what one might call a multifractal structure. In con-
trast, there is no fractal or multifractal structure in continuous ordering. In addition, I construct per-
colation cluster growth models isomorphic to spinodal decomposition and continuous ordering so that
precise tests of these predictions can be performed.

PACS numbers: 64.60.Fr, 05.50.+q, 05.70.Fh, 64.60.My

Systems undergoing spinodal decomposition' often ex-
hibit an interconnected structure strongly reminiscent of
fractals. It has been speculated that the early-stage mor-

phology of spinodal decomposition is in fact fractal,
Desai and Denton have measured the fractal dimension

df of a Lennard-Jones Auid undergoing spinodal decom-
position in dimension d=2 and found df-1.4. In addi-

tion, Coniglio and Zannetti have shown that spinodal
decomposition in the mean spherical model has an anom-
alous scaling behavior which they argue is multiscaling.
They speculate that this multiscaling is associated with
an underlying multifractal structure.

In this Letter I present an analysis of the order-
parameter evolution, rather than the structure factor, in-

dicating that the early-stage morphology is fractal and,
in addition, has a multifractal structure. By early stage I

mean that part of the evolution which is governed by the
linear theory of Cahn and Hilliard. ' I also present a

mapping of the spinodal decomposition and continuous
ordering evolution onto a percolation, or more accurate-
ly, a growing cluster problem.

I begin with the equations' for the evolution of the or-
der parameter in models A (a nonconserved order pa-
rameter, which exhibits continuous ordering) and B (a
conserved order parameter, which exhibits spinodal
decomposition) in the Hohenberg-Halperin classifica-
tion;

= —MI I
—R2V ttt(x, t) —

~rp~ ttt(x, t)
I

+4uttt'(x, t) —h[.

In model 3, I is a constant, which we will set equal to 1,
and equals V-' in model B. The constant M is a mobility,
R is the range of the potential of interaction, T, is the
critical temperature, rp is proportional to (T—T, )/T, .
and is assumed to be negative, u is a constant, and the
applied magnetic field h can be set equal to zero in mod-
el B.

Assuming the order parameter has the form y(x, t )
= ttrp+ tt (x, t ), where yp is a constant for which the

where u(x, t) is assumed to be a linear combination of
eigenvectors of the form e 'p(x). Equation (2) is easily
solved to obtain

and

Ip(x) c [ (k)exp(ik x) +c2(k)exp( —i k x)

(3)

where —~rp~+12utttp is assumed to be negative, k =~k~,
and Eq. (3) is the eigenvalue for model A (B) if I =1
(k ). The Fourier transforms of c~(k) and c2(k) into
position space describe the Gaussian initial Auctuation at
t =0. I have not included the Cook term explicitly since
I am not interested in the spatial structure associated
with the system at t =0 but in the structure evolving due
to the instability described by the Cahn-Hilliard equa-
tion (1). For this reason the c(k) are arbitrary and will
be chosen to be independent of k. With these considera-
tions,

u(x, t) ee dkexp(ik x)exp[k(k)t],

where A. (k) is given by Eq. (3) and the fact that A. (k) is

an even function of k has been used.
This solution can be analyzed for t —0 and for large t.

What is meant by large will be discussed in greater de-
tail below. The conclusions based on the analysis of
these two limits can be simply verified by explicit calcu-
lation in model A. I outline the calculations in d =2 and
3 and quote results in higher dimensions.

For t((1 we can expand e ' in a power series.
Keeping only the linear term it is simple to show that for
t«1, u(x t) is localized. In the limit t»1 we can
evaluate the integral using the steepest-descent method.

right-hand side of Eq. (1) vanishes and u(x, t) is small
for early time, Eq. (1) is linearized to obtain

ky(x) = —MI j —R V'-tt( tx) —~rp~p(x)+12utitpp(x)I,
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If kp is the value of k that maximizes the right-hand side

of Eq. (3), u(x, t) —JI/t Idee ' ", where the integral
is over the direction of ko.

For model A, kp=0 so that u(x, t) is a spatial con-
stant. This implies a fractal dimension of d, the spatial
dimension. For model 8, ko is not zero and the spatial
dependence of u(x, t) is Jp(kpx) the Bessel function of
order zero in two dimensions and jp(kpx) the spherical
Bessel function of order zero in three dimensions. The

asymptotic form of Jp(kpx)-cos(kpx)/ jkpx and

jp(kpx) =sin(kpx)/kpx, where x = ixi. Since these
functions describe a density variation, df can be obtained

d —df
by noting that the density will scale as 1/x f. There-
fore, df =1.5 in d=2 and 2 in d=3. From the expres-
sion for u(x, l ) the fractal dimension will clearly remain
equal to 2 for d & 3 implying that 3 is an upper critical
dimension. The fractal dimension of 1.5 in d=2 is con-
sistent with the measurement in Ref. 2.

Before discussing the multifractality of these struc-
tures it should be noted that there is a natural length
scale associated with spinodal decomposition and con-
tinuous ordering. The steepest-descent evaluation of the
integral can only be performed if the exp(ik x) in the
expression for u (x, t) is smooth. This implies that
k x=1. For large values of x this will not be true. An
estimate of the largest value of x can be obtained by not-

ing that the Gaussian part of the steepest descent will

essentially limit contributions when (k —kp) t) 1. -We

require then that kp x —(k —kp) x be constant until

(k —kp) t —1. This implies that the front of the devel-

oping fractal structure is at x-Kt. For x larger than
this value it is simple to show that the spatial part of
u(x, t) decays exponentially. It is important to note that
the structures described here evolve via the linear theory
which will only be valid for times in spinodal decompo-
sition less than R lnR. Taken together, these considera-
tions imply that the fractal structure extends only over
the region of scaled length x/R —v lnR.

In order to obtain the multifractal structure we slight-
ly modify the concept of a mass fractal introduced by
Vicsek. ' From the discussion above, in 1=3 there is a
density change at the point x given by

hm =sin(kpx)/kpx. (4)

In(I/i~m i'L")
I n (I/L )

(5)

where L-Jt is the linear dimension of the fractal and it
is assumed that L ))I.

Imagine now that we cover our system with blocks of
linear dimension I and ask how many blocks have a den-
sity change of Am. From Eq. (4) it is relatively easy to
see that the number of such blocks is N(hm) —immi
This power-law behavior in the density implies a multi-
scaling behavior. In order to see this explicitly I define a
"mass index"

where we have set I = l. In d =3, di =2 so that
f(a) =2 —a. Note that f(a) can be zero which corre-
sponds to regions of relatively large mass change. Al-

though these large-mass-change regions are rare, they
cannot be ignored. This will become clear as we discuss
the generalized dimensions D~, which are defined

through the relation '

(q —i)D, q~ -f(.)
2in(L/1) "-

da
L (I./I)" """ (7)

The a-independent constant on the right-hand side is a
factor that guarantees ' Do =df and that the q

= 1 mo-
ment equals I up to order L '. In order to calculate Dq
we need to know the upper and lower bounds for a, a,. „,
and a,„. Since imam i is bounded from above by 1, from
Eq. (5), a,. „-df. The value for a~, „ is obtained by
noting that immi L I is the total mass of the fractal di-
vided by the number of boxes with the same mass. Since
this ratio is bounded from below by 1, a„;„=0in d=3.
With a,„=O the maximum value of f(a) is 2, which is

equal to df as required. ' ''
In d=3, Eq. (7) implies that

2(L/t)' 'q

L q+1

' 2(q+1)
I1—
L

For q) —1, Eq. (8) implies that D~ =dt =2 as if the
structure were a uniform fractal. ' For q & —1, howev-

er, D~ =4q/(q —1).
In d=2 the asymptotic form of the solution of Eq. (2),

Jp(kpx) —cos(kpx)/ Jkpx, results in N(hm) —1/
(hm) . The same arguments as in d=3 result in

f(a) =2(1.5 —a), a,„=0.75, a .„=dy =1.5, and Dq
=df =1.5 for q ~ —2 and 2.25q/(q —1) for q ( —2.
Similar results are obtained for d & 3 and will be report-
ed elsewhere. The simple multifractal structure ob-
tained in the linear regime of spinodal decomposition is a
result of there being only two relevant lengths, L and

ko '. Model 8 of course has an even simpler structure,
i.e. , Dq =d for all q.

Finally, I will discuss the mapping of the early stage of
spinodal decomposition and continuous ordering on to a
percolation problem, or, more precisely, a cluster growth
problem. %ithout such a mapping it is presently very
difticult to measure the fractal and multifractal struc-
tures described above with computer-simulation tech-
niques. I begin with the dilute s state Potts model which
has been used to map thermal critical points' ' and spi-
nodals' ' onto percolation transitions. The Hamiltoni-
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N(a) -L"'



VOLUME 65, NUMBER 12 PHYSICAL REVIEW LETTERS 17 SEPTEMBER 1990

an is"-

—PH =Jg (8 —I ) [n, ni+ (I —n, ) (I —nj)] + Hg (I —81 )n,
tj I

+Hg (I —82 )(I —n, )+Kg [n;n, +(I —
n, )(1 —ni)] —gAin, —QA2(1 —n, ), (9)

where the sums are over all pairs of spins with separations less than or equal to the interaction range R. The n, are ei-
ther 0 or 1, K is the lattice-gas interaction, H is the Potts magnetic field, J is the Potts interaction, and h, is the chemical
potential of spin up (I) or spin down (2). The a, specify the direction of the Potts spins and 8 is the Kronecker del-

ta. The derivative of the free energy obtained from the Hamiltonian in Eq. (9) with respect to s and taking the limit

s I produces the generating function for a percolation model" where the sites are occupied with up or down spins

and bonds are placed at random with the probability pp = I —e between neighboring (i.e., within R of each other)
spins in the same direction.

Following a procedure similar to that in Ref. 13 the continuum version of the free energy of this model in the mean-
field (R ~) limit can be written as

F(y, y) = dx —s(s —I ) [R&y(x)] -' ——'s(s —I )y'(x) H(s —1)y(x—)
4 2 2

+ s(s —1)(s—2)(s —3)p (x)+ s(s —1)P (x)y(x) +FLt;(y),
2

(io)

where

FLG(y) = dx —,
' [R&y(x)] ——,

'
rpp (x)+ul/I (x) hy(x) .

and

+ W2$(x) l/f(X) —H (i2)

6FLg = —R V y(x) —roy(x)+4uy (x) —h .
6'y

(i3)

In order to have Eqs. (12) and (13) the same we must
identify H with h, 2wl/3. with 4u, and ri —w. y(x) with
I o. With these choices, the solutions of Eqs. (12) and
(13) with SF'/bp =SFLg/By=0 are identical. Writing
these parameters in terms of J, K, and c we obtain the
condition J=2K(1 —p), where the density p = 1+m and
m is the magnetization per spin. This is the symmetrized
version of tke mapping derived in Ref. 14 which has been

The external field h is proportional to h] —h, 2. The con-
stants ro, r],, w|, wq, and u can be written as functions of
J and K and the lattice coordination number c. The
essential point is that in this formulation the percolation
order parameter p(x) is the difference between the prob-
ability p+(x) that a spin at x belongs to the up infinite
cluster and p-(x) that a spin at x belongs to the down

infinite cluster. That is, p(x) =&+(x) —p —(x). As in

the discreet case, the generating function for the percola-
tion model is obtained by differentiating F with respect
to s and setting s = l.

In order to map the static thermal problem onto the
percolation problem we must compare the functional
derivative of dF(p, y)/ds i, -i =Fr with respect to p with
the functional derivative of Ft.g with respect to y; i.e.,

SFp

6
= —R 'V'y(x) —r i y(x) + 2 y'(x)

3t

used extensively to identify spinodals and critical drop-
lets near spinodals. ' '

The interpretation of this mapping is that the spinodal
curve is the locus of a set of percolation transitions. If
one approaches the curve along the line p= —' (i.e. ,

through the critical point), there is a transition from zero
spanning clusters to two, one up and one down at the
critical point. If the spinodal curve is approached ofI'

critical, there is a transition from one spanning cluster,
up or down depending on whether p is larger or smaller
than —, , to two spanning clusters, one up and one down.
The probability that a spin at x belongs to the up [down]
spanning cluster is given by p+(x) [p (x)] and the mag-
netization is proportional to fp(x). The region in which
a mean-field system undergoes spinodal decomposition or
continuous ordering is characterized geometrically at
time t =0 by the existence of two spanning clusters, rath-
er than the existence of one (or none) which geometri-
cally characterizes either the stable or metastable state.
%e are assuming that the quench rate is fast compared
to R-lnR, the duration of the linear regime. "

In order to extend this mapping to spinodal decompo-
sition or continuous ordering we write the equation for
the evolution of the order parameter p(x, t ) for the dilute
s-state Potts model in the form (s —

I )Bp(x, t )/Bt
= —MI 6F(p, y)/6P. The quantities M and I are as
defined in Eq. (I ) and F(p, y) is given by Eq. (10).
Diff'erentiating both sides of this equation with respect to
s, setting s= I, and identifying H with h, 2wl/3! with
4u, and ri —w2y(x) with ro as above, we obtain an
equation identical to Eq. (I). In the linear regime of,
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e.g., spinodal decomposition where the order parameter
in Eq. (I) equals a constant yo plus a small perturbation
u(x, r), the Potts interaction J that appears in the bond

probability can still be identified as J=2K(1 —p).
From this result the growing domain in continuous or-

dering or spinodal decomposition can be associated with

a growing cluster formed by throwing bonds at random
with a probability pa =1 —exp[ —2K(1 —p)] between
spins in the same direction which are closer together
than R. In a Monte Carlo simulation this would corre-
spond to a Metropolis (model A) or Kawasaki (model 8)
algorithm run on the spins with no notice of the bonds
and a bond update after some (arbitrary) number of
Monte Carlo steps. It should be noted that the cluster
generated by this method indicates the change in the
cluster structure of the spanning clusters present at t =0.
Simulations using this mapping to elucidate the fractal
structure are currently in progress. '

In conclusion, I have identified the fractal and mul-

tifractal structure in the early stage of spinodal decom-
position in systems with long-range interactions. This
structure should be observable in systems with mod-

erate-range interactions for early times. No compara-
ble structure exists for continuous ordering. The fractal
dimension in d=2 of 1.5 is consistent with the results of
Ref. 2.

Of particular interest is the q-dependent dimensions

D~ in spinodal decomposition. For q )0, D~ is indepen-
dent of q indicating a uniform structure. However, for

q (q, (0, where q, depends on d, Dq has a structure in-

dicating a second important length. These results per-
tain to linear theory. One could take the point of view

that the q & —
1 moments are not physical since they

have zero probability as L 0o and hence the fractal is

uniform. However, for large but finite L the nonlinear
theory is valid at later times' and the negative q mo-
ments will mix with the positive ones. This may be re-
sponsible for the rich structure seen in spinodal decom-
position but not in continuous ordering at later times. It
is possible that these low-probability negative moment

structures, which are the physical result of the conserva-
tion laws, are the reason that perturbation expansions
about the linear theory fail.

I would like to thank P. Alstrom, A. Coniglio, H.
Gould, M. Hetherington, J. Stringer, and P. Tamayo for
useful comments. I would also like to acknowledge the
support of the ONR.

'J. D. Gunton, M. San Miguel, and P. S. Sahni, in Phase
Transitions and Critical Phenomena, edited by C. Domb and
J. L. Lebowitz (Academic, London, 1983), Vol. 8.

R. C. Desai and A. R. Denton, in On Growth and Form,
edited by H. E. Stan1ey and N. Ostrowsky (Martinus Nijhoff,
Hague, The Netherlands, 1986).

A. Coniglio and M. Zannetti, Europhys. Lett. 10, 575
(1989).

4A. Coniglio and M. Zannetti, Statistical Physics: Invited
Papers from STATPHYS-l7, edited by C. Tsallis [Physica
(Amsterdam) 163A, 325 (1990)].

5J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 31, 688
(1959).

6J. W. Cahn, Acta Metall. 9, 795 (1961).
7P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49,

435 (1977).
sW. Klein (to be published).
sK. Binder, Phys. Rev. A 29, 341 (1984).
'oT. Vicsek, Fractal Growth Phenomena (World Scientific,

London, 1988).
B. Fourcade and A. M. S. Tremblay, Phys. Rev. A 36, 2352

(1987).
'~A. Coniglio and W. Klein, J. Phys. A 13, 2775 (1980).
'3A. Coniglio and T. Lubensky, J. Phys. A 13, 1732 (1980).
'4W. Klein, in Computer Simulations in Condensed Matter

Physics III, edited by D. P. Landau, K. K. Mon, and H. B.
Schutter (Springer-Verlag, Heidelberg, 1990).

'5L. Monette, W. Klein, M. Zuckermann, A. Khadir, and R.
Harris, Phys. Rev. B 38, 11607 (1988).

'6D. W. Heermann, Z. Phys. B 55, 309 (1984).
'7N. Gross, P. Tamayo, and W. Klein (to be published).

1465


