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Parity Breaking in Eutectic Growth
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Using the boundary-integral formulation we show that the fully isotropic model of eutectic growth in

directional solidification supports solutions with a broken parity symmetry. These correspond to the tilt-
ed "waves" observed recently by Faivre et al. Our results are in good agreement with these experiments.
For a fixed wavelength X we predict a collapse to zero of the tilt angle @ at a critical velocity V=V, .

which scales as V, -X -'. For not too small V we find that &=const along the line k-'V=const. %'e

make predictions which call for new experimental investigations.

PACS numbers: 61.50.Cj, 05.70.Fh, 68.35.3a, 81.30.Fb

Recently, Faivre et al. ' reported experiments on the
evolution of the liquid-solid interface during directional
solidification of the transparent CBr4-C2C16 lamellar eu-
tectic alloy. They observed, under some conditions, the
birth of small domains of tilted lamellae moving trans-
versely along the growth front. The tilt angle p is a
well-defined finite quantity (25'~3'). Such "solitary
modes" were previously discovered by Simon, Bechhofer,
and Libchaber during the growth of a nematic liquid
crystal.

An essential step was made by Coullet, Goldstein, and
Gunaratne who suggested that these traveling domains
are localized inclusions of a new antisymmetric state. In
their phenomenological picture such a state should

emerge from a secondary bifurcation of the symmetric
basic state. This would mean, in particular, that there
should exist in the extended system stationary periodic
solutions with a broken parity symmetry.

More recently, Brattkus et a/. made an analytical at-
tempt to investigate tilted solutions in eutectic growth.
They showed that if tilted solutions are to exist, they can
occur in general only for isolated values of the tilt angle.

However, their analysis indicates that, for large thermal
gradients where their approximation is expected to be
valid, the only solution that exists is the symmetric one.
We will return to this point later.

In this Letter we present a powerful numerical
method, based on the boundary-integral formulation, to
investigate front morphologies during directional so-
lidification of eutectics. We find that generically a
discrete set of tilted solutions coexist with untilted ones
within a wide range of the growth velocity. In particu-
lar, we have not found, so far, a lower velocity threshold
for the existence of tilted solutions. Here we focus atten-
tion on the experimental setup of Faivre et al. ' We ob-
tain good agreement with the experimental findings and
make predictions which can be tested experimentally.

The well-known model can be found in Refs. 5 and 6.
We do not make use here of the quasistationary approxi-
mation. It is by now standard to convert the basic equa-
tions into a closed integral equation for the interface
profile g(x, t), describing one-dimensional deformations.
Tilted solutions move in the laboratory frame at a con-
stant speed transversely to the growth front. In the rest
frame of the pattern the integral equation reads

aw(r) a 6(r —r')
an

dl g(r, r') = dt w(r) g(r, r') ——(n +n„ tang.)g(r, r')—
an

'
2l

" '
2

where the integration is performed along the (L-tt)
+(L-P) boundaries. g is the Green's function, which

corresponds to the stationary propagator in the frame
where tilted states are steady, and w(r) is defined as
w(r) =[ct (r) —c ]/Ac, where ct is the concentration of
the P component in the liquid, c its value at infinity,
and Ac=c, ti

—c, , the miscibility gap. Since both w(r)
and aw/an are known on the boundary from the Gibbs-
Thomson and continuity equations, the integral equation
actually constitutes a functional equation for the bound-

ary contour. The diAusion and thermal lengths are de-
noted by l and lt'-, respectively, for the p phase, p =tt, p.
p is the tilt angle which may be positive or negative. It
goes without saying that if a tilted state with an angle p
solves the full set of equations, so does a state with angle

The integral equation should be supplemented by

the mechanical equilibrium conditions at the triple
points. As an example we give the mechanical condition
at (x~, (~): Dti+Q= 0~ 02 (see Fig. I), where the (p
phase) pinning angle gati is obtained by equating the in-

terface tension components parallel and perpendicular to
the solid-solid interface. This condition follows from a
second-order accurate extrapolation. We seek periodic
solutions. As in Ref. 7, we have constructed a stationary
code that solves the integral equation subject to mechan-
ical boundary conditions. The method of discretization
is due to Saito, Goldbeck-Wood, and Miiller-
Krumbhaar. "

The discretization elements are indicated in Fig. 1. As
in previous work, we find it convenient to use, instead of
Cartesian coordinates, an intrinsic representation of the
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FIG. 1. Schematic illustration of the discretization pro-
cedure and the variables 0, and x„g, as used in the numerical
code.

curve by the angle 6 between the growth axis and the
normal to the interface, as a function of the arclength.
The interface position is then fixed by the coordinates
(x„(,",) (Fig. 1) of one eutectic point. Choosing N
=N, +N~ discretization points (which delimit equal arc-
length intervals) we have N, —1+Np —

1 =N —2 angle
variables plus the coordinates x„(,",; i.e., the number of
unknowns is N. We impose the integral equation every-
where except at the end points where the two phases
meet. There we require mechanical equilibrium of the
surface tensions instead. The curvatures are evaluated at
these points by means of a third-order accurate extrapo-
lation.

By simple counting of equations we see that there are
N —4 equations from the integral equation, two equilib-
rium conditions at (x„(,), and one each at (x(, (, () and

(x)v, (,")v), totaling up to N equations.
Hitherto, we have made no assumption whatsoever on

the value of the tilt angle, so that the N equations can a
priori be solved for each value of (t(. We are seeking
periodic solutions, but for an arbitrary value of the tilt
angle the interface will exhibit a discontinuity at the end
points of the interval [O, A, ]. We must therefore require
(,'((((() —g)v(((() =0, which constitutes a "quantization
condition" for the tilt angle and leads to the selection of
a discrete set of possible ((( values. As previously, our
discretized nonlinear algebraic equations are solved by a
Newton-Raphson method.

We have found that the "microscopic" model of eutec-
tic growth admits solutions with isolated values of the tilt
angle as expected from the aforementioned quantization
conditions. We have made a systematic investigation of
these solutions for the experimental setup of Faivre et

1al. A typical set of parameters used in these calcula-
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FIG. 2. Tilted solution for V=2.8. Other parameters are
given in Table I. Lengths are reduced by k.

tions is given in Table I. We should mention that the
diffusion coefficient is not accurately known for this sys-
tem. This means that we can convert our diffusion
length into a physical velocity only within an order of
magnitude. In what follows we will assume that D
=10 cm s '. Also the pinning angles are not well
known. We find that although a variation of these an-
gles by 10% to 30% does not alter our conclusions, it may
induce quantitative changes by almost the same percen-
tage. In what follows lg (=IT) is taken as the unit of
length. The diffusion length is typically on the order of
the thermal length. We should signal that, for V& 12,
the actual k is smaller than the X,„of Jackson and
Hunt' for axisymmetric growth (more details will given
elsewhere). Figure 2 shows a tilted solution for V=2.8
which corresponds to a tilt angle of 22'. For the same
parameters we have found another tilted solution with a
smaller angle (about 10'). So far we have seen only two
branches for the present set of parameters. These solu-
tions coexist with the completely symmetric one. Figure

TABLE I. The values of the parameters used in this calcu-
lation.

d'~

G
hc
c~

L Lma, mp
5 Sma, mp

c~ —c,'
6„0p

5x 10 pm
30 pm

60 Kcm
15 wt%

1 wt'%)

1.48, 2. 16 K/wt'k
1.48, 2.07 K/wt%

11.13 wt%
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FIG. 3. Tilt angles vs pulling velocity. Three branches can
be clearly distinguished.
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3 shows the evolution of the tilt angle for both branches,
hereafter referred to as the pf and the p2 branch for the
smaller and the bigger angles, respectively, as a function
of the growth velocity. It is obvious, in view of the
above-mentioned uncertainties on the material parame-
ters, that we can only approximately narrow the experi-
mental range down to lie between, say, V=1 and V=5
in Fig. 3. Three remarks are in order. (i) Tilted solu-
tions exist for very small velocities. So far we have
found no indications for a lower velocity threshold. (ii)
At higher velocities both branches (pi and p2) collapse to
zero roughly as (V, —V)'i near a critical velocity V, .
We have investigated the dependence of V, on X. We
find that V, scales as V, -k . This means, if such scal-
ing is always valid, that for a given velocity there should
exist a maximum wavelength X,. „above which tilted
solutions cease to exist. For V=2.8, X,.„=9pm. This
is much larger than the wavelengths which are seen in

experiments. Close to V, the a phase exhibits a slightly
negative curvature, as a precursor of a tip-splitting
mode. In reality, if V continues to increase, the splitting
becomes more and more pronounced, thus favoring
creation of an extra lamella. We should mention that
close to V, it becomes very difficult to discriminate be-
tween the two branches. Since it is not yet clear whether
such a regime can be achieved in standard experiments,
we have not felt it worthwhile here to put this region un-

der close scrutiny. (iii) In a variational picture —with

the proviso that this notion has a meaning —the associ-
ated potential would possess three extrema at & =0,&i, &2

(not counting negative p's). Since the untilted solutions
are stable (at least in the experimental range), it is ap-
pealing to speculate that the pi branch is unstable'
while the p2 one is stable. This would imply that there
exists a metastability domain where the untilted solution
coexists with the tilted one with the larger angle p2. In
the experiment of Faivre et al. ,

' the creation of a tilted
structure requires a finite fluctuation achieved by a sud-
den jump of the velocity. The tilted solutions then ap-
pear as localized domains, which eventually spread out
to cover a finite region. It is clear that these observations
support our ideas.

Our findings indicate that the tilted solution, once
created at a certain velocity Vi when the presumed '

"metastability barrier" is overcome, should survive
within a rather large velocity domain below Vi when V is

again decreased. Recent experiments'' seem to favor
this idea: The tilted wave survives down to V=0.8Vi.
We hope that systematic experimental investigations can
be carried out in the near future.

For a fixed wavelength, p decreases as V increases be-
fore it collapses at V, . However, it is known experimen-
tally" that the selected wavelength scales approximate-
ly as X —V ' . The same scaling holds at the minimum
undercooling point. ' We have studied here the evolu-
tion of p for diA'erent values of X and V. From our inves-

tigation, we conclude that, for not too small V (V) 4), p
is a function of the combination k V only, p(X, V)
=p(A, V), meaning that the tilt angle remains constant
along the line A, V= const. This result agrees with the
experiment of Faivre et al. ' where no noticeable varia-
tion of the tilt angle has been detected. It would be in-

teresting to see whether a similar scaling holds when the
thermal gradient is allowed to vary. ' Our scaling result
may suggest that the full eutectic problem can be formu-
lated as a nonlinear eigenvalue problem, as in the case of
dendrites, ' for example, where the relevant parameter
would be X V.

A seemingly common feature' related to the parity
breaking is that the asymmetric state has a larger wave-

length X, than the corresponding symmetric one X, . In
eutectic growth it is found experimentally that X,/k, =2.
We discovered here that the parity breaking is associated
with a recession of the growth front. It is interesting to
see whether a wavelength increase of the tilted interface
may result from a compromise of the coexistence at the
same average undercooling h, of both states. ' For a few
values of V, lying in the experimental range, we have
found that at the same 5, )i,,/X, =1.6. Note that the ex-
perimental precision of the ratio A,,/X, is only about 80%.
Since the 3ackson-Hunt theory predicts that the curve h,

as a function of A. takes on a minimum, there should ex-
ist, according to them, a second X, ()X,„) which pro-
vides the same h, . We have found that the interface
(mainly the a phase) exhibits a tip-splitting mode far be-
fore (40%) the sought h, is reached. In reality, this will

favor the creation of extra lamellae which leads to a
wavelength reduction.

In view of the above results it is tempting to conjecture
that the comparison of the average undercooling of the
symmetric and asymmetric fronts constitutes a physical
criterion for the wavelength selection of tilted waves.
We will report on systematic investigations along this
line in the near future.

Before we conclude, we would like to briefly comment
on the large-thermal-gradient results of Brattkus et al.
Their analysis predicts that no tilted solution exists for
lr/l«1. How small this parameter should be has re-
mained unclear. In the present work, we find that tilted
solutions exist for values of this parameter down to at
least 10, with a tilt angle of about 10'. Their treat-
ment in terms of "boundary layers" is legitimate only if
the meniscus contribution is localized near the pinning
points. We find that this is not accurate for the P phase
except for extremely large thermal gradients, in which
case only the untilted solution survives, ' in agreement
with their result. We think that a semianalytical anal-
ysis using the basic idea of Brattkus ei al. would consti-
tute a promising tool for further theoretical analysis.

In summary, we have presented a powerful numerical
method which allows us to investigate the existence of
solutions with a broken parity symmetry. Such solutions
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drift at a well-defined speed in the laboratory frame. We
have found that these solutions do not require crystalline
anisotropy, but are intrinsic to the fully isotropic model.
Our results agree well with the experimental findings.
We have emphasized the importance of measuring accu-
rately some parameters, in particular, the mass diAusion
coefficient, the ignorance of which constitutes a major
handicap for more precise comparisons with experiments.

We have predicted a collapse, at fixed wavelength, of
the discrete set of tilted solutions at a critical velocity V, .

Such velocities are not easily reachable in experiments.
One reason is that the Mullins-Sekerka' instability in-

tervenes, before V, is attained, to deform the interface on
a larger scale. A simple argument based on the evalua-
tion of the diff'usion layer that forms ahead of the front
indicates that such an instability should take place at
very high V. It is likely that "parasitic" impurities lead
prematurely to the Mullins-Sekerka' instability. We
believe that a highly purified eutectic should give access
to the collapse regime by quenching the sample at high
speeds. We expect there, in particular, a widening of the
wall between the symmetric and asymmetric states, as a
precursor to the collapse.

Our analysis predicts that tilted states exist also for
small values of V. For the moment little is known exper-
imentally on the extent of the hysteresis. It is likely that
this extent is practically infinite.
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