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Universal Critical-Point Amplitudes in Parallel-Plate Geometries
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In a critical system contained between parallel plates, it is known that the magnetization and energy
density profiles close to one wall are modified due to the presence of the other wall. In addition, there is

a long-range force between the walls. It is shown that the ratios of the amplitudes governing these
effects are universal, and moreover, independent of the boundary conditions at either wall. Their values
are proportional to the scaling dimension of the density under consideration. Results are also given for
the effects of local curvature of the wall on the density profiles. These results are shown to be a conse-
quence of the conformal invariance of the critical system.

PACS numbers: 64.60.Fr, 05.70.Jk

Consider a d-dimensional generalization of a parallel-
plate geometry in which two (d —1)-dimensional hyper-
planes are separated by matter, for example, a binary
fluid, at a bulk critical point. Some time ago, Fisher and
de Gennes' argued that the reduced free energy per unit
area of such a system should contain a term, depending
on the separation D, of the form A,bD +', where the
amplitude A,b was later argued to be universal, depend-
ing only on the types of boundary conditions a and b at
the respective walls. This term in the free energy gives
rise to a Casimir- or van der Waals-like long-range force
between the two plates. Subsequently, it was understood
that the possible types of boundary conditions are related
to universality classes of surface critical behavior. In
the most common example of a binary fluid, there is

preferential absorption of one component, leading to a
nonzero profile for the order parameter near the wall.

In the same paper, Fisher and de Gennes
' gave argu-

ments, based on a local form of the free energy in an in-

homogeneous system, that, in such a situation, the
order-parameter profile at a distance z«D from one
wall would be modified by the presence of the other wall

by a relative amount B,t, (z/D) . The value of the ex-
ponent in this relation was confirmed in a renormal-
ization-group analysis by Rudnick and Jasnow, and for
the two-dimensional Ising model by Au-Yang and Fish-
er. In this Letter, it is shown that it follows simply
from an understanding of the role of the stress-energy
tensor in the short-distance expansion near the wall.
Moreover, this analysis applies not only to the order pa-
rameter, but to any scaling density (p(z)) which has a
nontrivial profile near the wall. In addition, the ratio of
the amplitudes B,b and A, b is given by

Bab 2' 'dx '-' x
r(d/2) c '

where x, is the scaling dimension of g, and the universal
number c, to be defined blow, is a generalization to d di-
mensions of the central charge, or conformal anomaly
number. " While this number does not so far appear to he

easily accessible in other experimental situations, ' Eq.
(1) does show that the ratio on the left-hand side is in-

dependent of the particular boundary conditions on ei-
ther wall, and that the ratio of the amplitudes B~b for
different scaling densities (for example, the magnetiza-
tion and energy density) is simply given by the ratio of
their scaling dimensions.

The relation of Eq. (I) was first noted by Burkhardt
for a certain class of scaling operators in two dimensions,
in the course of the explicit calculation of their exact
profiles in the finite geometry. It also follows rather sim-

ply for any operator in d=2 in the case where a=b,
where it is found that both A„= —ttc/24 and'
B~, = 6 x x~ are in fact independent of the type of
boundary condition a. However, the argument for the
validity of Eq. (I), which is summarized below, is com-
pletely general and should apply to all conformally in-
variant theories, in particular to those describing the
large-wavelength fluctuations of critical systems below
their upper critical dimensionality.

Although the details of the argument are somewhat
cluttered by a proliferation of indices, in essence they are
rather simple. First, recall some results of conformal
field theory '' and critical behavior at walls' in d di-
mensions. The stress-energy tensor T„,, (r) is defined as
the response of the reduced Hamiltonian (or action) /t'

to a general infinitesimal coordinate transformation
r" r" + a"(r): 8& = —Sd ' f6"a'(r) T„,, (r)d r. The
factor S~ =2tt /I (d/2) is included for convenience. In
a conforrnal field theory, T„,, is conserved, symmetric,
and traceless. The dimension x, of a scaling operator
p(r ~ ) then dictates" the most singular term in its
operator-product expansion (OPE) with the stress-
energy tensor (taking r~ =0 for simplicity):

r„r, —(1/d)r 6'„,,
T„,, (r)tlt(0) =a, " ', "' tlt(0)+O(r +'), (2)

where a, =dx, /(d —
1 ).

Correlation functions of bulk operators like ttt(r ~) in

general become singular as their arguments approach the
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wall. In order to have a renormalized continuum theory
with operators defined at the wall, it is necessary to per-
form additional renormalizations. ' These surface
operators y~' have in general diAerent scaling dimen-
sions xj' from those in the bulk, resulting in a set of sur-
face exponents. The set of such operators is character-
ized by the particular surface universality class, which
are labeled above by a, b, . . . . Examples would be the
ordinary, special, and extraordinary transitions (with ei-
ther sign of the surface magnetization) in an Ising-like
system. Bulk operators a distance z from the wall may
be expressed in terms of the adjacent surface operators
by an analog of the OPE:"

y(r~~, z) =gbj&z """'
y, (ri),

j
(3)

where r~~ is the component of r parallel to the wall, and j
labels the different possible surface operators, which in-

clude the identity operator I and the stress-energy tensor.
The stress-energy tensor is, however, a special case. Its
correlation functions are regular as the argument of T„,
approaches the surface, and therefore it does not need
any new renormalization at the wall. Thus the "surface"
stress-energy tensor is the same operator as in the bulk,
with its canonical dimension d. However, at the wall it
should satisfy the boundary condition' Ti =0. This
follows from the requirement that no length scale is im-

plicit in the boundary conditions, so that the system is in-

variant under reparametrizations of r~~~. It is equivalent
to the assumption that the system is exactly at a fixed
point of the renormalization group, with respect to both
the bulk and the surface fluctuations. In a real system,
at bulk criticality, departures from this picture over mi-
croscopic distances from the boundary are expected.

For a general bulk operator, the most relevant terms
appearing on the right-hand side of Eq. (3) are the iden-

tity operator I and the stress-energy tensor. ' Rotational
invariance in the II subspace implies that the only com-

ponents which can appear are the (d —1)-dimensional
trace T;, and T Since the total trace T» is zero, these
are, however, proportional. Thus, normalizing p so that
b& =1, the short-distance expansion, Eq. (3), may be
written (taking r~~ =0)

P(z) =z 'll+b$z T:.-(0)+ ] . (4)

rpr (I/d)r Bp„
(T„,( ')(s(0))o =. . . ($(0))o, (5)&d+ 2

where' (p(0))o=2'"'~r~ r~~"'. Note —that the normali-
zation is fixed by the short-distance behavior as r~ r.
Transforming this result back to the half-space, and tak-
ing the limit as r ~, r ~ 0,

Now, take the expectation value of this equation in the
parallel-plate geometry. Conservation of the stress ten-
sor implies that (T (z)) is independent of z and thus

equal to its value on either wall. Since the stress tensor
keeps its canonical dimension, this expectation value
must be proportional to D, giving the Fisher-de
Gennes exponent, ' as confirmed by Rudnick and
Jasnow. From the definition of the stress-energy tensor,
(T, ) represents the force per unit area between the
plates. Thus if the reduced free energy F per unit area is

A, s/D ', it follows that (T,-. ) = —(d —1)SqA,q/D .
The Fisher-de Gennes amplitude B,q is thus proportion-
al to the coe%cient A,b of the Casimir eA'ect. The ratio
depends on the coefficient bf, whic. h may be determined
as follows.

Consider now the semi-infinite geometry, denoted by
SI. Conformal invariance predicts the exact form of the
correlation function (T„,(r)p(r~))s~ in this geometry.
This may be seen by making an inversion about the im-

age point r ~, which sends the half-space into the interior
of a hypersphere, and r

~
into its center. In this

geometry, denoted by 8, the form of the correlation
function is dictated by rotational invariance and the
OPE, Eq. (2), to be

2 "'a~ (r ~

—r
~ )q(r ~

—r
~ )~

—(I/d)
~
r

~

—r
~ ~ Bq~

Tpv r (t' rl SI Zy Qpl r Qvcx r
x~ —d+ 2r

where g„,(r) =6„,—2r„r,/r . However, the left-hand side may also be evaluated in this limit using the short-distance
expansion, Eq. (4). Since (T„„)=0 in the half-space, this gives

(r)4(r I ) )sl bH "' 'lr
i
—r i

I' "'(T„(r»-:(0)&si . (7)

The two-point function of the stress-energy tensor in the half-space on the right-hand side may be found using similar
methods to those described above for (Tp). The result is rather simple: It is equal to the two-point function

(T„„(r)Tq (r~))R~ in the full space R, plus an image term (T„,(r)T~ (r~))it~, where Tq is the reflection of T~, that is,
the z components are reversed in sign. As r~ 0, these two terms become identical if (ko) =(zz). The two-point func-
tion in the full space is determined by rotational symmetry, conservation, and tracelessness to have the form

(Tp,, (r) Tg (0))Rd ~~ g&g(r)Q„(r)+ g,,i(r) Q„(r) ——8„„6q
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bttt(ri) = —Sd ' (T , (r)p(r )i)-stiJ f(r~~)d"r. (9)

This integral may be transformed by the divergence
theorem into one over the hyperplane z =0, which may
then be evaluated by deforming the surface of integra-
tion into a small hypersphere surrounding r i. The result
contains two terms, one proportional to f(ri), which de-
scribes the change in (p(ri)) due to its distance from the
wall being modified by this amount, and a second, more
interesting, term given by 6(p)/(p) = —[x,/2(d —1)]
xz&~~f. To lowest order in f and its derivatives, this is

proportional to the local mean curvature of the wall.
Thus (specializing to d =3 for clarity) the density profile
near a curved wall is

((t (z)) -z + + O((z/R, ) '-)
Ri Rp

(10)

where Ri and R2 are the principal radii of curvature.
Although the derivation outlined above is valid only in

the limit of weak curvature, it is expected that, when

computed in renormalized perturbation theory, all such
quantities will involve only geometric invariants formed
from the induced metric on the wall and its intrinsic and
extrinsic derivatives. '-' Equation (10) also agrees with

exact results for the exterior and interior of a sphere, ob-
tainable by a finite conformal mapping from the half-
space. '

To summarize, a set of relations has been found be-
tween critical-point amplitudes in parallel-plate geo-

where the number c is universal. This is one generaliza-
tion to d&2 of the central charge which plays a ubiqui-
tous role in two dimensions. Inserting this into Eq. (7),
and comparing with Eq. (6), gives b r=2 'a,/-c, leading
to the main result, Eq. (1).

One might ask whether the higher-order corrections to
the behavior of (p(z)) also satisfy similarly simple rela-
tions. The answer is negative. Results from two dimen-
sions' show that the higher-order terms in the short-
distance expansion, Eq. (4), contain in general several
operators with the same scaling dimension. Thus it is
not possible to disentangle their respective coefficients by
comparing with the appropriate term in the expansion of
(Ty)

The knowledge of the (Tp) correlation function in the
half-space may be used in another way to compute the
eA'ect of curvature of the wall on density profiles nearby.
According to the definition of the stress-energy tensor,
the change in such a density corresponding to an
infinitesimal change z z+f(r~~) in the shape of the
wall is

metrics and at curved boundaries which indicate that
certain ratios depend only on bulk properties and are in-
dependent of the boundary conditions. This is probably
the first practical application of the principle of confor-
mal invariance to critical systems in three dimensions. It
would be very interesting to see whether these predic-
tions are testable in binary fluids or other systems, for
example, dilute polymer chains in restricted geometries.
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