
VOLUME 65, NUMBER 12 PHYSICAL REVIEW LETTERS 17 SEPTEMBER 1990

High-Accuracy Calculation of the 6s ti2 = 7s ti2 Parity-Nonconserving Transition in

Atomic Cesium and Implications for the Standard Model
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A many-body calculation of the parity-nonconserving amplitude for the 6sli& 7slp2 transition in

atomic cesium with an error of order 1% is presented, EpNc= 0.906[9]&gw/ IV—)i lelaox10 ' . Us-

ing this result to determine Q& from high-precision measurements of the transition leads to a quantita-
tive test of the standard model. The various sources contributing to this transition are discussed and

their uncertainties estimated. A discussion of radiative corrections with emphasis on the role of the top-
quark mass is given.

Hw = (GFIJ8 )Qw p „,(r) ys,

where p„„,(r) is a combination of the neutron and proton
densities in the cesium nucleus discussed further below
and the weak charge Qw is defined as

Q w = 2 [(2Z + IV )C ) „+(Z + 2IV) C ) d ], (2)

where Cl„and Cld are the vector couplings of up and
down quarks to the neutral current. It is important to
emphasize at this point that atomic PNC measurements
are uniquely sensitive to this combination of C~„and

PACS numbers: 31.10.+z, 12.15.Ji, 12.15.Mm, 31.15.+q

The recent accurate determination ' of the mass of the
Z has ushered in a new phase of the study of the weak
interactions, that of high-precision tests of the theory
which are sensitive to radiative corrections, the finiteness
of which was a prime motivation for the introduction of
unified theories of weak and electromagnetic interac-
tions. To study radiative corrections to the standard
model, it is desirable to have as many highly accurate
tests of the theory as possible. One such test is provided

by the measurement of the parity-nonconserving (PNC)
6s ~I2 7s ~iz transition in atomic cesium. Observations
of PNC transitions have been made in a number of
atoms, but we concentrate here on atomic cesium be-
cause there have been advances in both theory and ex-
periment '' that have the potential of changing the
qualitative test of neutral currents so far provided by
atomic PNC to a quantitative test, second in accuracy
only to the Z mass measurement as a determination of
Hw. To gain quantitative information about the standard
model from atomic PNC, it is clearly important to re-
view carefully the various sources of the effect and the
uncertainties associated with each, which is done in Secs.
(l)-(4) below. Once these issues are discussed, we are
in a position to show how a high-accuracy measurement
of PNC transitions in cesium can be interpreted to give
information about Ow and the behavior of radiative
corrections in the standard model.

The dominant effect that induces PNC transitions be-
tween the 6s ~iq and 7s ~I2 states in cesium is described by
the weak Hamiltonian

C~d, and thus even with precision of a few percent, pro-
vide some of the most stringent limits to modifications of
the standard model involving extra Z bosons. ' To justi-
fy the use of this Hamiltonian one starts with the
current-current interaction induced by the exchange of a
Z between an electron and the nucleus, which leads to
PNC transitions when the electron current is axial vector
and the nuclear current vector (A„Vtv) or vice versa
(V„Atv). Hw is associated with the time component of
(A„V~); the space component of (A„Vtv) and both the
time and space components of (V„Atv) are relatively
small and will be discussed under heading (3). Because
it is the fourth component of a conserved vector current,
the nuclear matrix element is not renormalized by the
strong interactions, and is directly proportional to a
weighted average of the number density of up and down

quarks in the nucleus, which in turn depends on the neu-
tron and proton distributions in the nucleus. The uncer-
tainties associated with these distributions will be dis-
cussed under heading (2).

(1) The effect of Hw is to give each state of the atom
a very small opposite-parity admixture, so that s 1~2 states
contain some p ~~2 components, which gives the normally
magnetic dipole (M 1) transition 6s~i2 7s~i2 a small
electric dipole (E 1) component. A powerful and sys-
tematic approach to calculating the E1 matrix element
is the use of various methods of many-body perturbation
theory (MBPT), which have been applied extensively to
cesium by several groups. In the present work we
have obtained agreement between two diAerent MBPT
schemes. In the first we saturate the sum over inter-
mediate many-body states li) in the expression

'

&7slHwli)&t ID 16s) &7s IDlt)&t IHwl6s)
'

EpNc +
6~ &i

(3)
We have developed a technique' which sums certain
infinite classes of MBPT diagrams, allowing calculations
of hyperfine constants in Cs to be carried out at the 1%
level of accuracy, and calculations of energies and al-
lowed E 1 matrix elements to 0.5% or better. By includ-
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P(theory) =27.00[20]a() . (4b)

Note that we adopt a convention of using square brack-
ets for theoretical uncertainties and parentheses for ex-
perimental error. The coefficient —0.906 in EpNq in-

cludes a Breit correction of 0.002, which is found by

adding the Breit to the Coulomb interaction everywhere
in a Dirac-Fock level calculation. The calculation of P is

similar to that of EpNp, with H~ essentially replaced by
a second dipole operator D. The theoretical errors quot-
ed here are based on the following tests: (a) We modify
the wave functions slightly to fit energies; (b) we make
similar modifications to fit instead hyperfine constants;
(c) we compare the dipole operator in both its length and

velocity forms; and (d) we use experimentally available
energies and oscillator strengths where possible instead
of the calculated ones. The resultant scatter in values of
Eppes and P is used to determine the errors. The error
estimates represent the largest changes in Epb)c and p
generated by the modifications described above.

In our second method we include the effect of H(F in

the single-particle states, which acquire opposite-parity
admixtures; we then use these parity-mixed states in a
MBPT calculation of a dipole matrix element. Speci-
fically, we solve for normalized quasiparticle orbitals p, ,

for the 6s i/2 and 7s [/2 states which satisfy

(5)

Here X is the second-order self-energy operator, and

hpF is the Dirac-Fock (DF) Hamiltonian. The solution

of (5) is e uivalent to summing an infinite sequence of
chains of Z . Each state p, . acquires an opposite-parity
admixture p, . which we calculate by adding H& to hpF in

the core DF equations and in Eq. (5), and by linearizing
the resulting equations in H~. Finally, we evaluate

EpNc —«7i I (D+ DRpA) l&b. &+«7. I
(D+ DRpA) I «.&

+«7:IDRr Al« &+EsR+E +E o. (6)

where DRpA is the RPA modification to the dipole opera-
tor, and the last three terms are small contributions from
structural radiation, ' internal opposite-parity substitu-
tions in Z, and normalization, respectively. Because

is a rather inaccurate approximation to the exact
self-energy, we repeat the calculation with Z

-' replaced
by A,Z, where k =0.80 for s]/2 states and X =0.84 for

p [/2 states were chosen to fit energies. The prediction for

ing the li& =I6p)/2&, I7p)/q&, I8p)/i&, and I9p)/q& atomic
states explicitly in Eq. (3) with this technique, and then
estimating the omitted contributions (which amount to
about 2%) using low orders of MBPT, we find for EpNc
and the vector Stark polarizability P for the 6s)/q-7s)/:
transition

Epg c(theory) = —0.906[9](g)F/ /v)i le

lao�

&& 10

(4a)

EpNp changes by only a few tenths of a percent. This
calculation agrees with the result of the previous very
diferent approach to within our quoted error on EpNp.

The most complete alternative calculation of Eppes in

the literature is by members of the Novosibirsk group,
who obtain a coefficient —0.91[1], in good agreement
with our value. Our second calculational scheme follows
closely the approach they introduced, except that they
calculate explicitly an infinite subset of higher-order
corrections to the- self-energy operator, rather than rely
on a scaling parameter X as we did. There is close agree-
ment between the individual contributions in their calcu-
lation and the present one.

In an earlier calculation which treated X, only in

leading order, we obtained a coefficient —0.951[50].
Hartley, Lindroth, and Martensson-Pendrill have recent-
ly performed a similar calculation, confirming our ear-
lier result, and including an additional cross term be-
tween the RPA correction and the self-energy operator,
leading to a value —0.936[37]. This cross term is also
included in the present calculation and in the calculation
of the Novosibirsk group. The primary reason for the
disagreement with our present result is that we chain the
self-energy by solving the full quasiparticle equation (5),
which accounts for a further —3% reduction.

We mention also the semiempirical results
—0.935(19)[28] (Ref. 8) and —0.904[18] (Ref. 9).
While all calculations are consistent within quoted er-
rors, it is still a major challenge to atomic theory to pro-
vide even more accurate results as the precision of the
experiments improves.

(2) The charge density of the cesium nucleus has been
determined by a muonic x-ray experiment: In terms of
a spherical Fermi distribution it is given by

p (i ) p [I +e (r —c)/a] —
1 (7)

with a =2.3/4(ln3) fm and c =5.6743(10) fm. Unfor-
tunately, the neutron density, which enters significantly
into the weak Hamiltonian, is not experimentally avail-
able. We have used a theoretical determination' of this
density based on a theory that reproduces the charge ra-
dius, and gives for the neutron distribution

(8)

with c' =6.153 fm, a' =0.648 23 fm, and b = 1.589.
When an appropriately weighted neutron and proton dis-
tribution was used in place of the charge distribution, the
lowest-order Dirac-Fock result changed by only 0.08%.
While there is, of course, some theoretical uncertainty in
the determination of this distribution, the relative insen-
sitivity of atomic PNC makes this error entirely negligi-
ble compared to the theoretical uncertainty discussed un-
der heading (1).

(3) HR, as discussed above, comes from the time com-
ponent of (A„Vv). The spatial component of this term
and the time component of (V„A)v) are highly sup-
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pressed: We estimate their size at under 0.1%. Turning
to the spatial part of the latter term, it can be shown that
its eff'ect is described by the Harniltonian

where K =4 for the unpaired proton of ' "Cs and
K2= —0.05. In addition, the existence of parity viola-
tion within the nucleus leads to a parity-violating mag-
netic moment called the anapole moment, ' that leads to
a Hamiltonian with a very similar structure,

(io)

We treat Eqs. (9) and (10) together by replacing K,
with K:—K, —(x ——. )/irK2 in Eq. (10). While the nu-

clear distributions could be different, we have found little
sensitivity to the details of the distribution; results from
a Fermi distribution differ from a crude shell-model cal-
culation distribution by less than 2%. Because both of
these effects are sensitive to questions of nuclear struc-
ture and strong-interaction corrections, the uncertainties
of such calculations could be a serious problem for inter-
pretation of atomic PNC. However, experiments mea-
sure diA'erent hyperfine transitions, and it is possible to
eliminate the effect of both Hip and H& by taking ap-
propriate linear combinations of the diA'erent measure-
ments. Specifically, the spin- —'. nucleus couples to the
electron s]/q states to form multiplets with total spin
F=3 and 4. The contributions to the PNC amplitude
from H~ and H~' calculated in the Dirac-Fock ap-
proximation, including weak core-polarization correc-
tions, lead to the following spin-dependent result for
6s i@(F)—7s i p(F'):

EpNt- from this Hamiltonian in the DF approximation,
and find that it contributes under 0.1% of the basic term,
and can be neglected at the present level of accuracy.

Once the precision of atomic PNC is at the 1% level, it
is necessary to include radiative corrections properly.
While at tree level Qii depends only on Hip, radiative
corrections depend on two unknown quantities, the mass
of the Higgs boson mH, and the mass of the top quark
m, . Because Og must be inferred from experiment using
radiative corrections, its value thus depends on mH and

m, . However, the dependence of 0~ on mH is quite
weak, and in a particular renormalization scheme, the
modified minimal-subtraction scheme, ' the dependence
of Oii on m, is also relatively weak. The most recent
determination of Hip in the modified minimal-subtraction
scheme, using the precise Z mass measurement' and as-
suming mH =100 GeV, is

0.2328(5), m, =100 GeV,
iP) = '

0 2301(4) m, =200 GeV (i3)

This equation is an approximation to the relatively com-
plex formulas for p' and ~' given in Ref. 19. %e are now
in a position to extract information from a high-accuracy
measurement of cesium PNC. The most accurate experi-
ment ' reports

—1.513(50) m V/cm (F= 3 F' =4),
tm(E )!p= ' —1.639(48) mV/cm (F=4~ F'=3) .

Considering now only the standard model we intro-
duce the one-loop radiatively corrected form

Qip =p'I N+Z[1 ——4x''sin Hip(mip)]]

= [0.9796+0.0020m, /mip]

x j —N+Z[l —4.012sin Oiv(mii )lj . (14)
Eppes

= 0.906 [9] +A(F', F)K (is)

x g (y, + y,')(1 —a, . a, )d(r, —r, ) . (i 2)

We have calculated the lowest-order contribution to

xi ~e~aox10

with A(3, 3) =0.029, A(4, 3) = —0.041, A(3, 4) =0.048,
and A(4, 4) = —0.022. The values of the coefficients
A(F', F) agree to within 10% with results from semi-
empirical' and MBPT ' calculations. Thus, as will be
discussed below, appropriate linear combinations can ei-
ther isolate nuclear-spin-dependent eAects, or, if one is

interested in testing the standard model with the least
possible theoretical uncertainty, eliminate them.

(4) Finally, we consider the effect of Z exchange be-
tween two electrons. This is described by the Hamiltoni-
an

Hii3i = — (1 —4sin Og )(, ) GI'

32

Using Eq. (11) we can either extract a value of Fpgc in-

dependent of H~ and H~, or alternatively determine
K =0.83(46), which is consistent with the theoretical es-
timates ' K=0.29-0.37. The former procedure, which
is close to taking an average of the two transitions, leads
to Im(EpNt-)/p= —1.572(35) mV/cm. Using the value
of p from Eq. (4b) and converting into the units of Eu.
(4a) gives the experimental value

Eppes = —0.8252(184) [61]i~e~aox 10

Then using Eq. 4(a) we can finally determine Qip as

Qii = —71.04(1.58) [0.88],

(i 6)

(i7)

~here we have taken the two theoretical errors in quad-
rature.

We can now comment on the implications for the stan-
dard model of atomic PNC. When m, is much smaller
than m~, the dependence of p' on this parameter is
negligible. However, because the lower limit of m, is
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significantly larger than the value 45 GeV used in earlier
works, ' one must specify a value for it before a deter-
mination of 0~ can be made. In the following we treat
two cases, m, =100 and 200 GeV. %e find

0.2242(65) [36), m, = 100 GeV,
0.2215(65)[36], m, =200 GeV .
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It is of interest to note that, if the experimental error can
be reduced to below the theoretical error, this method of
determining 0~ will compete in accuracy with neutrino

scattering.
The 1.2% variation in the central value of sin 8~(mu )

in Eq. (18) as m, varies from 100 to 200 GeV would ap-
pear to present a barrier to accurate tests of the standard
model while m, is still unknown. The same problem
occurs for the Z mass determination of sin 8it (mtt ), as
can be seen from the 1.2% variation in Eq. (13). Howev-

er, the dependence on m, is almost identical, and so if
one takes sin Hit (mit ) from Eq. (13) and applies it in

Eq. (14), the resulting value Qit = —73.1 is essentially
independent of m, . For this reason atomic PNC taken
together with the Z mass determination cannot give in-
formation about the top-quark mass, but instead allows a
test of radiative corrections to the standard model and a
probe sensitive to new physics free of the uncertainty
caused by the unknown value of m, .

To repeat the main conclusion of this Letter, the
theoretical status of atomic PNC has improved to a point
where the next generation of experiments will provide
quantitative constraints on the standard model. Atomic
PNC is insensitive to m, when the mass of the Z is used
to determine 8it, so that an unambiguous test is allowed

by a high-accuracy experiment. %e have examined
several sources of theoretical error, and have found that
the dominant error is still associated with the calculation
of Fpic and P. The reduction of this error to the tenth
of a percent level is an outstanding challenge to many-

body theory. Ho~ever, even at the 1/o level, atomic
PNC has a significant role to play as one of a set of ever
more precise experimental tests of the standard model.
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