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Self-Organized Criticality: Goldstone Modes and Their Interactions
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It is shown that critical behavior of systems with self-organized criticality can be explained as a
Goldstone-mode phenomenon. The nonlinear interaction of the Goldstone mode causes the nontrivial
critical exponents. Two more models are introduced with self-organized criticality features.
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The recently described' phenomena dubbed self
organized criticality are intensively studied now using

analytical, experimental, and numerical methods. -

The interest in these phenomena is caused by the large
variety of systems in nature which exhibit self-similar
behavior in their temporal or spatial fluctuations. The
analogy with the second-order phase transition often
works as a guideline in understanding the self-organized
criticality (SOC) phenomena. There is no doubt now

that there is a variety of different universality classes
with different sets of exponents, some of them looking
like mean field. '' Scaling relations can be written for
these exponents. It is also known that the upper critical
dimension is d,. =4 for an isotropical model'. and d, . =3
for a directed model. ' These predictions were support-
ed numerically. ' But working with the second-order
phase-transition analogy, there always remain some open
questions: Why is the system exactly at the critical
point? Why are these systems so common? What is the
special reason for that?

In this paper we shall try to give a new viewpoint to
the SOC phenomena as a natural property of Goldstone
modes in a many-body degenerate state. First, we shall
consider the properties of correlation functions in SOC
models. We shall point out the striking analogy between
these properties and properties of transverse fluctuations
of order parameter in the n-component Heisenberg mod-

el below the Curie temperature. Later, we shall use this

analogy to introduce two more models with SOC
features.

Let us consider a few examples of SOC phenomena:
(1) The relaxation process at nonzero temperature in a
lattice-gas model after adding a net particle. It can be
described as a diffusion of excess mass to the periphery
of the system. (la) If the diffusion is linear, we have a
trivial example of a model with a self-organized criticali-
ty. (lb) Nonlinear diffusion of particles due to tneir in-

teractions. One of' the versions of the later =ase was de-
scribed and solved by Hwa and Kardar. (2) Tlute same
system at T=O. There is no thermally activated relaxa-
tion in the system; the dynamics of the system is com-
pletely determined by microscopical dynamical rules.
They can be different. (2a) One can introduce the rule

that if the number of particles at any particular site
exceeds some critical value z„ then excess particles jump
randomly to one of n neighboring sites. '' (2b) Another
rule is possible: If the number of particles exceeds the
critical value z, , then n particles are moved to the neigh-
boring sites, one particle per neighbor. '

In all these models, we have an order parameter —the
average density of particles per site. The total amount of
particles is a conserved quantity during the evolution of
these models.

In the first two models the magnitude of the order pa-
rameter is determined by the boundary conditions. In
models (2a) and (2b) it is determined by dynamical
rules: In model (2a) the number of particles per site
would be exactly equal to z„. in model (2b) it is equal to
z, —(n —I )/2. It is the essential feature of threshold dy-
namics that if the average particle concentration is less
than the above values, the system does not exhibit the
"critical" behavior. The sharpness of the threshold con-
dition causes the sharpness of order-parameter attenua-
tion and breaks the symmetry between particles and
"holes. " The evolution of all these models after the add-
ing of a new particle can be understood in terms of
diffusional (or deterministic) propagation of excess den-
sity wave. In all these models if one particle is added,
one particle (in average) should leave the system. Thus
the density-wave propagator should be gapless (in
momentum presentation). It means that there is no ex-
ponential decay or exponential growth in this propagator,
For models (la) and (2a), the relaxation is trivial and
can be described by the Gaussian correlation function
G = 1/k —. In models ( 1 b) and (2b) the nonlinearity
should be taken into account. It is clear that the non-
linearity cannot reduce the number of particles. The
linear dynamics of any of the above models results only
in displacements of particles. The nonlinearity of the
models can be described as an additional displacement,
dependent on the local concentration. In terms of the
perturbational diagram technique, the nonlinearity can
be taken into account by many-particle diagrams with
the interaction vertex containing the displacement opera-
tor e' —1. In the anisotropic case, the leading term in

this operator should be a V, where a is a unit vector in a
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preferred direction. In the isotropic case, when there is

no preferred direction, the leading term should be pro-
portional to V . It can happen that the nonlinearity can
result in slowing down of the process or in speeding it up.
In this case the interaction can be expressed as some

r8ttime-shift operator e ' —1. The leading term is then
T8(.

It is well known that gradient-dependent interaction
(or k dependent in momentum presentation) is the in-

trinsic feature of interaction of acoustic waves in solid
medium or spin waves in ferromagnets. This is the com-
mon property of the so-called Goldstone modes: In the
long-wavelength limit these modes can be reduced to a
homogeneous displacement of the sample or to a uniform
rotation of the whole spin system, and the nonlinear in-

teraction between them should vanish.
In many physical systems, serious attention has not

been paid to the Goldstone-mode interaction because it
leads to a nontrivial scaling behavior of the spectrum of
the system only if the space dimension is less than or
equal to 2. This is because symmetry restrictions permit
only interactions of the form V y . A well-known exam-
ple' is the interaction of transverse spin waves of the
two-dimensional XY ferromagnet (n =2) below the criti-
cal point. '

It is also known that in the limit n=0 the Heisenberg
ferromagnet model describes the statistics of polymer
chain solution. ' The number of transverse modes in this
case is equal to —1. The nontrivial renormalizations
due to transverse-mode interactions result in anomalous
correlations functions in a two-dimensional polymer
melt. "

At n=1, we have an Ising model and there are no
transverse modes at all. But we can formally consider
the transverse fluctuations of the general n-component
model-' in the n 1 limit. Thus at n=1, the transverse
correlation function can be calculated. It does not con-
tribute to the partition function of the n =1 model, but it

can be useful in certain applications. For example, in

the polymer-magnet analogy, the case n =1, T & T, de-

scribes the solution of ring polymers with the average
length of order (T, —T) '. In thi.s case, the transverse
correlation function describes the end-to-end correlations
of a single linear polymer chain placed in that solution.

Returning to nonlinear models (lb) and (2b), we see
that the broken symmetry between particles and holes
permits the y interaction vertices (with gradient terms)
and this results in a higher critical dimensionality of
these models. Probably this is why they are often
thought of as systems which due to some unknown

reason are exactly at the point of the second-order phase
transition. Actually these models are definitely below
the phase-transition point, and what we think is their
nontrivial criticality is simply the eA'ect of interaction of
the gapless modes.

Summarizing the above consideration, we suggest that
for any ordered or correlated many-body state we can in-
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troduce the gapless modes associated with the transla-
tional invariance or with the degeneracy of order param-
eter. Even if the system has no such degeneracy, it can
be considered as a limit case of a more general system
and appropriate Goldstone modes can be found. In this
case they do not contribute to any measurable quantity
of the model, but they can have a simple geometrical in-

terpretation. Belo~ we shall describe two more systems
which exhibit the SOC behavior. We generated these
systems just using the above ideas.

Percolation. —The bond percolation can be formally
described by the 5 1 limit of the 5-component Potts
model. This is a model with a discrete symmetry of or-
der parameter and there are no Goldstone modes in it.
But we can obtain them in a slightly modified model
called the dynamical percolation model. -" Let us consid-
er the porous media where the thickness of walls between
two neighboring pores varies at random. A fluid is

pumped into one randomly chosen pore under the pres-
sure p. The fluid can penetrate also into the neighboring
pores if the pressure p is strong enough to break the
walls between them. Then fluid spreads over the system
forming a finite or infinite cluster (if p )p„where p, is
some threshold value). The statistics and correlation
functions of pores filled with a fluid are the same as in

bond percolation theory. But the cluster structure is
dift'erent. It is a treelike structure of pores filled up with
fluid and broken walls between them. It is important
that they are not in any closed-loop configuration of bro-
ken bonds: If the spreading fluid finds some way to a
certain pore, there is no need to find another. Making a
small shift and starting to pump fluid from any other
point which belongs to the same cluster, we shall get the
same picture of pores filled with a fluid but a diA'erent

treelike structure of broken walls. If we consider only
the bonds (broken walls) which are present in the second
tree but absent in the first, we shall see that they also
form a tree. We shall call it the "difference tree" or "d
tree. " At p (p,. we shall have only finite clusters with a
finite correlation length; the same correlation length will

describe all d trees connected with the same cluster. At

p & p, we have an infinite cluster which in terms of per-
colation theory can be characterized only by the average
density (order parameter) and by the density-density
correlation function (longitudinal correlation function)
with a finite correlation length. Nevertheless, the distri-
bution of d trees generated by shifting the position of the
starting point must be powerlike and will be controlled
only by the size of the system L. It can be understood in

a simple way by considering the d tree generated by the
shift from point 1 to point 2 whose magnitude is of order
L. The size of this tree F should be of order L". Point 2
can be reached in L- unit steps along the branch of the
first tree, which connects points 1 and 2. Thus this big
tree can be decomposed as a sum of L - trees generated
by unit steps. Among these trees would be the trees of
all sizes F starting from the unit size. But the average
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size of a d tree generated by a unit shift should be at
least L . Thus they can be described by the distribu-
tion function

p=O 8

p(F, L) -(I/F')g(F/L )

with two critical exponents r, o related through

(2 —r)cr =d 2.— (2)

What is the upper critical dimension for the statistics of
d trees? Using the above suggestions about the gradient
terms in the interaction vertex we can believe that the
critical dimension is reduced by 2 with respect to the
critical dimension d, =6 of the percolation and dynami-
cal percolation models. This conjecture can be verified

by a simple proof. The exponent r in a distribution func-
tion of random trees is r=

& . The fractal dimension of
random trees is 4; thus o =4. Substituting these mean-
field values into (2) we obtain d, =4.

Directed percolation. —The directed percolation mod-
el describes the propagation or spreading phenomena in

anisotropical media. For example, it can be used for
description of the spreading of infection or fire in a tree
garden affected by wind. If one tree is infected, it can
infect the neighboring trees with probabilities p(q),
where q is the vector indicating the direction of the
spreading of infection. For the sake of simplicity we can
assume that the probability to infect the tree against
wind direction is zero, and all other probabilities are
equal to p. If p exceeds some critical value p„ the infec-
tion from one tree will spread in a certain cone of direc-
tions forming the infinite cluster of infected trees. The
angle of the cone depends on the difference p —p, . It is
remarkable that near the cone the conditions for starting
a new epidemic process by infecting any healthy tree are
exactly critical [see Figs. 1(a) and 1(b)]. Creating one
after another new epidemic processes by infecting new

points above the cone, we obtain the new critical cone
structure [see Fig. 1(c)]. The process of formation of
this structure is somehow very similar to the process of
formation of a critical sandpile by adding sand on its top.
The size distribution of the epidemics will be the same as
above but with a

(3)

relation between the critical exponents. There appears
additional anisotropy (preferred direction) for new
avalanches. It is caused by the local slope of the cone
formed by previous avalanches. This anisotropy de-
creases additionally the upper critical dimension by I (in
the same way d=5 for the directed percolation model is
lower than d, =6 for isotropical percolation). Taking
into account the possible gradient terms, we suggest that
the upper critical dimension is d, =2 for this model.
This can also be checked easily. The exponent 5 for ran-
dom directed trees is the same, r = —', , but the mass of
the directed tree scales with its largest size as F—I

(aj

(c)

FIG. l. (a) Spreading of a fire or infection in tree garden
affected by wind. If one tree is infected, it can infect two
neighboring trees with probability p. Here p=0.8; the infinite
cluster of infected trees is shown. (b) Near the cone formed by
"dead" trees the conditions for starting a new epidemic process
by infecting any healthy tree are exactly critical. (c) Creating
one after another new epidemic processes by infecting the
points l, 2, and 3, we obtain a new critical cone structure, simi-
lar to the previous ones.

thus cr =2. Using Eq. (3) we get d, =2. It is interesting
to note here that d, =2 is simultaneously the upper and
the lower critical dimension of the model. As in the pre-
vious case the criticality in this model appears only at
p&pc

The above models can help in understanding the possi-
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ble self-organized criticality behavior of the "life" game,
where the unit perturbations, in a steady state, create the
restructuring pattern with a power-law distribution of
their sizes. The life game is a model with a stationary
state and fixed average density. The structure of this
state is similar to the structure of infinite cluster in the
directed percolation model. %hat is quite diA'erent from
the percolation cluster is that there must be other inter-
nal parameters characterizing the stationary state.
These can be phases of stable blinking configurations,
the parameters indicating their complexity, etc. So we

can expect that the structure of a stationary state is de-
scribed not only by the density parameter (as in percola-
tion theory), but with some complex highly degenerate
order parameter. In this case there can be gapless Gold-
stone modes (phasons). These phasons generated by a

unit perturbation can be seen as a restructuring pattern
with a power-law distribution.

One of the recent papers devoted to the SOC phenom-

ena is entitled "Is the World on the Border of
Chaos?" Summarizing the above consideration we can
answer this question: "The World can only slide along
this border. "
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