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We study the phase separation of the O/W(110)-p(2x1)+p(2x2) system with LEED as it is
quenched from an “infinite’’-temperature initial state to within its coexistence region. Novel features of
this system are the fourfold degeneracy of the ordered phases and their finite densities. The measured

growth exponent is consistent with the Lifshitz-Slyozov prediction x = § .

Diffusion activation energies

measured with two independent methods are consistent with each other and lead to £ = 0.58 eV.

PACS numbers: 64.60.Qb, 64.70.Kb, 68.35.Md

Recent studies of systems under strongly nonequilibri-
um conditions, realized after a quench that forces the
system from a high- to a low-symmetry state, have
revealed certain universal characteristics. Extensive
theoretical work ' on models with Monte Carlo simula-
tions and some experimental work®® have suggested that
the growth of the lower-symmetry phase, as measured by
its average domain size L, is universal; i.e., it depends on
few general parameters and not the details of the system.
It usually obeys a power law

L=A(T)t*, (1

with the exponent x classifying systems into different
growth classes.

The estimation of the exponent x is computationally
difficult because its range is limited to 0<x < % and
excellent statistics are required. It is well established,
however, that x =% for systems'®'' with nonconserved
order parameter [both for conserved (Kawasaki) and
nonconserved (Glauber) particle number] and that
x =1 for systems'?>"" with conserved order parameter
which phase separate into high- and low-density phases.
This latter case was worked out originally by Lifshitz
and Slyozov for small volume fraction of one of the
phases. The mechanism leading to x =% involves the
evaporation of monomers, mainly from smaller domains,
and their diffusive transport until they encounter and
condense on domains further away. Growth is effectively
accomplished with the larger domains growing bigger
and the smaller ones eliminated. Recently, this mecha-
nism has been extended'*'* to the case of finite volume
fraction when the two phases occupy comparable
amounts. It has been argued and verified with computer
simulations that the exponent is still x =+, because the
rate of evolution is still limited by the long-range mass
transport through the matrix. Only at early times can
diffusion along the interfaces separating the intercon-
nected domains lower the exponent x. At the next level
of complexity of the phase-separation process, one would
like to examine the effect of multidegeneracy and
nonzero densities of both ordered phases. Multidegen-
erate ordered phases have been studied theoretically be-

fore with both nonconserved and conserved dynamics on
systems in a single-phase region separated by a second-
order line. Originally, it was believed %1617 that the
growth exponent x decreases with the number of degen-
erate ground states p, and if p is larger than the spatial
dimensionality, growth is logarithmic. Recent work'®!?
on systems with conserved dynamics has suggested, how-
ever, that although growth freezing is possible at zero
temperature, at finite temperature the exponent x ap-
proaches the value § asymptotically. This was shown on
models with next-nearest-neighbor jumps'® (in addition
to the nearest-neighbor ones) or by allowing a stable pre-
cursor state.!” The effect of multidegeneracy, however,
has not been tested for the phase-separation process,
especially on experimental systems. The O/W(110)-
p(2x1)+p(2x2) system provides such a possibility be-
cause two ordered, fourfold-degenerate states coexist at
low enough temperatures. Both phases have finite densi-
ties (02x1 =0.5, 02x2=0.75) and the density difference
(A0=06,x> —60,%x,=0.25) is smaller than the difference
(A6=1) in the models of phase separation that are usu-
ally studied.

We study this system at high coverage, 8= 0.68. The
experiments were carried out in a UHV chamber with
base pressure (6-8)x 10 ~'" Torr equipped with a com-
mercial LEED diffractometer, a single-pass cylindrical-
mirror analyzer for Auger spectroscopy, and a mass
spectrometer for background-gas analysis. The sample
can be heated to 800 K by radiation and 2200 K for oxy-
gen desorption by electron bombardment. During the
electron bombardment, the sample holder was electrical-
ly connected to the filament so only desorption from the
crystal was possible. This provides a very clean crystal
before dosing, free of contamination. The sample could
be cooled to a temperature of 130 K by thermal contact
with a liquid-nitrogen Dewar. Diffraction patterns were
imaged with a SIT video camera, frame averaged, digi-
tized, and stored for spot-profile analysis on an IBM-AT
computer.

Initially, oxygen was dosed with the crystal cold. The
coverage, 6 =0.68, as measured by Auger spectroscopy is
between a perfect (2x1) and a perfect (2x2) super-
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structure. It is known that there is no diffusion at
T =130 K, so the adatoms are frozen in an “infinite”-
temperature configuration. The crystal is quenched up
into the temperature range 351-384 K, and the super-
structure spots appear gradually. This temperature
range was selected because at lower temperatures no ap-
preciable growth can be measured and at higher temper-
atures growth was too fast for the detector.

The observed (2x2) diffraction pattern does not
uniquely determine the real-space configuration. Either
(2x1) domains coexisting with (2x2) domains or pure
(2x2) domains are consistent with the (2x2) diffraction
pattern. The first possibility has been suggested° from a
schematic completion of the phase diagram which was
determined with equilibrium measurements. A theoreti-
cal study?' of a lattice gas, with a weak fifth-neighbor in-
teraction modeling the system, has suggested no coex-
istence between (2x1) and (2x2) domains, only (2x2)
domains. In Fig. 1, we plot the peak intensity of the

+ 3 ) spot versus the peak intensity of the (+0) spot
for several growth temperatures. It is clear the relation
deviates from linearity as time increases. This suggests
that both (2x1) and (2x2) domains are present; other-
wise, if only (2x2) domains existed, the linearity would
extend over the entire curve. This is additionally sup-
ported by the comparison of the final full width at half
maximum (FWHM) of the spots obtained at the end of
growth. The (70)-spot FWHM is narrower than the

+ ) FWHM by approximately 15%. If only (2x2)
spots were present, then the FWHMSs would have been
the same. This demonstrates how useful information
about the equilibrium phases and the determination of
the phase diagram of an overlayer can be obtained from
these nonequilibrium experiments.
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FIG. 1. Plot of the peak intensity I2*? of the (T T ) spot vs
the peak intensity I2*' of the (£0) spot. The deviation from
linearity shows that both (2% 1) and (2%2) domains coexist on
the substrate. Different symbols correspond to different
quench temperatures.

The inverse square root of the second moment of the
spot profile at time ¢,

Sieigisg,n | 7"
F-lS(q,t)

increases with time and is proportional to the average
domain size of the ordered domains. The above summa-
tion is carried out over the entire Brillouin zone.
S(q,1) was measured along the close-packed direction.
Heating-time intervals were increased progressively by
approximately a factor of 2, since we are expecting a
power-law growth. Each growth curve of different tem-
perature was least-squares fitted by the power law [Eq.
(1)] to determine the growth exponent x. We find that x
lies within the range 0.31 £0.03. Only at the highest
temperature is x below this range. However, substantial
growth occurs at this temperature even during the initial
shortest time interval of 0.25 min, so saturation effects
might be more important. Figure 2 shows the growth
curves plotted against ¢* and straight-line fits through
the data.

The use of g(z) as a measure of the time dependence
of the average domain size L is more accurate than the
peak intensity. The latter is more sensitive to instrumen-
tal broadening. On the other hand, ¢(z) is a weighted
average over the entire Brillouin zone, and thus, for
points further away from the peak, the profile is flatter
and the instrumental effects are limited. The FWHM
(corresponding to domains of linear dimensions approxi-
mately 30 A) of a profile at the end of the growth is ap-
proximately 2.5 times larger than the instrument re-
sponse function.

The temperature dependence of the growth rate in Eq.
(1) can be related?>?3 to the diffusion activation energy.
Nonequilibrium experiments, in addition to addressing
the question of universality, can provide diffusion activa-
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FIG. 2. Plot of q(r), the inverse square root of the second
moment of the angular profile S(g,t) vs t* for five tempera-
tures shown in the figure. The slopes of these lines are used to
extract the growth-rate activation energy.
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tion energies which can be used?? to extract adsorbate-
adsorbate and substrate-adsorbate interactions. The two
known models where analytic work is possible (the
Lifshitz-Cahn-Allen growth law,'? applicable to a p=2
system with nonconserved dynamics, and the Lifshitz-
Slyozov law'2) and recent Monte Carlo simulations?* on
a model with p=2 and conserved dynamics show that
the diffusion coefficient appears on the right-hand side of
Eq. (1) with the same exponent x as time. This has been
generalized?>2? for any growth law, Eq. (1), by a dimen-
sional argument. Since there is no time in the left-hand
side of Eq. (1) [and under the assumption that the only
time dependence of A(T) is through D], D, which has di-
mensions of inverse time, must have the same exponent
as time to eliminate the overall time dependence of the
right-hand side in Eq. (1). It follows that D is propor-
tional to 4 "%, so the diffusional activation energy is 1/x,
the growth-rate activation energy. Figure 3 shows Ar-
rhenius plots of the growth rate determined from Fig. 2.
We obtain E£,4=0.19 eV for the growth rate activation
energy. Dividing by the growth exponent, we find
Ep=0.58 eV for the diffusion activation energy. We es-
timate the uncertainty in the diffusion activation energy
to be * 10%.

It is also possible to extract a diffusion activation ener-
gy from the measurements without relying on the value
of the growth exponent x. By inspecting the growth
curves at different temperatures, one determines the
various times 7(7') that the average domain size reaches
a fixed value Lo. We only assume that in Eq. (1) the
diffusion coefficient and time appear as a combination
(Dt) on the right-hand side, but no specification of the
functional form of the growth law or the exponent x is
needed. Since L is the same for all temperatures, it fol-
lows that D(T) =const/7(T). Hence a plot of ¢~ '(T) vs
1/T can provide the diffusion activation energy. This es-
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FIG. 3. Growth rates extracted from the time dependence of
q(t) vs 1/T. The diffusion activation energy E =0.58 eV is
determined from the growth-rate activation energy divided by
the growth exponent x.
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timate has the advantage of being independent of the
measured value of the growth exponent. We find for the
diffusion activation energy Ep=0.52 eV, within the
range of the previous estimate.

At the same time, the consistency of the activation en-
ergy measured by the two methods strengthens the relia-
bility of the measured exponent x =0.31 £0.03. Actual-
ly, the ratio of E) measured from the times 7(T) re-
quired to attain a certain length L to the measured E 4
can be used as an independent measure of the growth ex-
ponent x.

The measured exponent x =0.31 +0.03 is consistent
with the exponent x =1 predicted by the Lifshitz-
Slyozov theory. Is this expected? As we described
above, the requirement of mass transport through the re-
gion separating the growing domains determines the 7'/
growth law. It is clear that mass transport is needed in
the present system. The (2x1) phase acts as a ‘“sea”
through which monomers evaporating from the (2x2)
domains diffuse to condense on larger (2x2) domains,
and conversely, the (2x2) phase acts as a “sea” for the
(2x1) domains to grow. The separating phases have
nonzero densities (82x; =0.5, 6,x, =0.75) instead of the
fully occupied (8,x;=1) and fully emptied (8¢ x)noles
=0) phases of the ferromagnetic Ising model used for
phase-separation simulations, but this does not affect the
requirement of mass transport. Furthermore, the four-
fold degeneracy of the separating phases does not change
the growth exponent. It has been demonstrated? in
computer simulations that the ground-state degeneracy
has no effect on the growth exponent for systems with
Glauber dynamics. Although it requires larger computa-
tional effort, this has been also suggested'®!? to be true
for systems that obey Kawasaki dynamics. The above
results apply to systems that are quenched into a single-
phase region, where the growing domains of different de-
generacy are adjacent to each other. The independence
of the growth exponent on degeneracy should be expect-
ed on stronger grounds for the case of phase separation,
because domains of different degeneracy do not share
boundaries and slowing down due to topologically stable
configurations is less probable. Recent simulations?® on
a lattice gas model with (2x1) and (2x2) coexisting
phases have demonstrated that the growth exponent for
the phase separation of these two phases, out of an initial
random configuration, is x =, in agreement with our
experimental results.

In summary, we studied the phase separation of a sys-
tem in an initially “infinite” temperature into two mul-
tidegenerate finite-density ordered phases. The growth
exponent is consistent with the Lifshitz-Slyozov theory of
phase separation with the degeneracy and density having
no effect. We also extracted a diffusion activation ener-
gy of E =0.58 eV by using two independent methods.
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