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New Numerical Method to Study Phase Transitions
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We present a new numerical method to identify the nature of a phase transition. When combined
with finite-size scaling, the method can identify unambiguously a weak first-order transition even when

accessible system sizes are L/( (0.05 as in the five-state Potts model. At a continuous transition, ex-

ponents can be determined surprisingly accurately and the computational effort required is moderate.
The method is tested on the 2D Potts and 3D Ising models, but should be quite generally applicable.

PACS numbers: 05.50.+q, 64.60.Fr, 75.10.Hk

Monte Carlo (MC) simulations have been used for
many years to study the properties of models of physical
systems. The behavior near phase transitions has been
one of the main objectives of such studies but a correla-
tion length g greater than accessible system sizes L may
lead to many difficulties. Finite-size-scaling ideas'

help to extract critical exponents, amplitude ratios, etc. ,
but this requires prior knowledge of at least the nature of
the transition. When the system undergoes a weak first-
order transition with g»L, as in the five-state Potts
model where g) 10 lattice spacings, it becomes very
difficult to identify its nature even with large-scale com-
putations. This problem is worse when one is faced
with a new system in which nothing is known.

This Letter deals with the purely numerical study of
phase transitions supplemented by very general finite-
size-scaling ideas, assuming that almost nothing is

known. There are two separate issues here: first, the
identification of a continuous or first-order transition
which is a prerequisite for the second, the detailed evalu-
ation of physical quantities such as critical exponents, la-

tent heats, etc. Moreover, to perform an accurate extra-
polation to the thermodynamic limit of, say, the latent
heat at a first-order transition, it is essential to use sys-
tem sizes L & g, which may be completely inaccessible.
As an example of this, Fig. 1 shows a plot of the devia-
tion of the latent heats from the exact values hl
= [I(L) —l(~) I/l(~) against (/L for the q =5,6, 8 Potts
model for L ~ 60 using estimated values of g(q). It is
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FIG. I. Deviation of latent heats Al=l(L)/l(~) —
1 of

q =5,6, 8 Potts models. Correlation lengths g(q) =1512,
108,18 are chosen to collapse data on a single curve.

clear from the figure that it is impossible to extrapolate
accurately the five-state data because of the rapid de-
crease of I(L) for L & g. It has so far proved impossible
to verify the first-order nature of the transition by purely
numerical methods.

Binder' has suggested using the fourth cumulant of
energy or order parameter, but, although this has a
known nontrivial thermodynamic limit, it suffers from
severe crossover effects. Our method exploits the finite-
size-scaling properties of a quantity hF(L) which are
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unambiguous even when L«g and, more importantly,
can be implemented with reasonable computational
eAort.

All our simulations were performed on an IBM3090
without techniques such as multispin coding, and most
were done using a standard single-spin-flip Metropolis
algorithm. Some were repeated using the Swendsen-
Wang algorithm" to reduce critical slowing down which
reduced statistical errors, but the two methods agree
within numerical errors. We tested the method on the
2D q-state Fotts models with q =2,4, 5,6,8 with L & 60
and on the 3D models with q=2, 3 with L ~ 14. The ex-
pected first-order nature for q & 5 in 2D and q =3 in 3D
is unambiguously confirmed and, as a by-product, we

have been able to obtain surprisingly accurate values of
the Ising correlation-length exponent v(2) =1.003(10)
and v(3) =0.634(6). The exponent 2P/v is obtained
with rather less accuracy, with the results 0.247(8) and
1.02(3).

The method depends on two key ideas: the iden-
tification of a quantity AF(L) which has characteristic
behavior as a function of L at a first-order or second-
order transition or in a single-phase region, and a techni-
cal advance by Ferrenberg and Swendsen enabling this
to be computed accurately. The central quantity is the
restricted probability distribution for a system of size L
with periodic boundary conditions. In N MC sweeps,
standard probability theory implies that the number of
times an observable L, such as energy or order parame-
ters, is realized is

exp[ —A(X,L,N)] NZ '(P) g A(E~,X)exp( PE~), —
El

where Q(E~,X) is the number of states with energy E~
and Z(P) is the partition function. For a field-driven
first-order transition, X is chosen as the order parameter
M and for a temperature-driven one X is the energy E,
with 0 (E ~,E) = Q (E)8(E

~
E). A (X,L,N) differs from

the bulk free energy F(X,L) by a temperature- and N-
dependent additive quantity but, at fixed P, L,N, the
shape of A(X,L,N) will be identical to that of F(X,L)
and also A(X) —A(X') =F(X)—F(X'). This last point
is important since a measurement of AA gives a direct
evaluation of the corresponding hF. Since the shapes of

and F are identical and we shall use free-energy
differences for quantitative purposes, we shall refer to
free energies in the following.

At a transition, F(X,L) has pronounced double mini-
ma corresponding to two coexisting phases at L=L~ 2

separated by a maximum at L corresponding to a
domain wall between the two phases. The other variable
of interest is a scaling field g which moves the system
along the phase boundary. The critical point is at g=0,
the first-order line is at g & 0, and g & 0 is the disordered
region with the field h conjugate to L fixed at its critical

value. For a magnetic system undergoing a field-driven
first-order transition g ~ T —T, and X=M, while for the
q-state Potts model undergoing a temperature-driven
first-order transition, X =E, h a: T T—, , and g(q) is a
measure of the distance from q =4. '

In the thermodynamic limit, F(X)L is independent
of X for L~ & X + Lq at a first-order transition, but for
finite L, the bulk free energy F(X,L) has a double-
minima structure with an expansion

F(X,L) =L fo(X,g)+L 'f)(X,g)+ (2)

The bulk free-energy density fo is minimum and con-
stant for X~ ~ X~ X2 and the surface term f ~

has a
maximum at X„,. ' Then it is obvious F has minima at
X~(L) =X~ —O(L ') and Xq(L) =X.+O(L ') with a
maximum of height

AF(L) =F(X„„L) F(X),L) =8(g)L +O(L ) .

This is true at any first-order transition provided L )& g,
but, when g=0 and L «g, F(X,L) is dominated by its
singular part and is a universal function of the scaling
variables x =XL ' and y =gL '. At the transition,
defined by equal depths of the minima, hF is a universal
increasing function of —y in a first-order regime since
the minima become more pronounced. For the 2D q & 4
Potts models, g is a marginally relevant variable' so

Xg =0, but y increases with L so that hF also increases.
Although we have been unable to calculate the explicit

form of hF(y) it is clear that, as L increases, if we are in

a first-order regime, AF must also monotonically increase
as the minima develop, eventually crossing over to L"
behavior. Of course simulations of hF =hA for
L ~ L .,„cannot determine completely and unambigu-
ously the presence or absence of a first-order transition.
However, if one assumes that all irrelevant variables
have scaled to zero and the system is not crossing over to
another critical point where hF is also finite, then a
growing hF implies a first-order transition, ' a constant
hF a critical point, and a decreasing hF, vanishing at
L=O(g), a disordered phase (see Fig. 2). These argu-
ments constitute a sensitive test for the nature of a tran-
sition by simulations. In Fig. 3 are shown a typical set of
simulations for q =5,6, 8 Potts models and in Fig. 4 the
results for hF(L). The monotonic increase is obvious for
all three.

For the special case of the Ising model with L=M,
one can show explicitly'

aF(L) =a —by+0(y 2), (3)

where a, b are positive constants of order 1 and estimates
of the critical exponents may be obtained using Eq. (3).
In particular, the exponent v= 1/X~ is obtained by com-

paring S =GRAF/ jg-L '~' for diAerent L values (Fig. 5).
This yields quite accurate estimates of v and does not
need an accurate location of T, . Moreover, because AF
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FIG. 2. Peak height AF(L) for various values of J/kT in

critical region of 2D Ising model. The values at fixed L are all
generated by doing one simulation at J/kT 0.44069 and then
extrapolating.

FIG. 4. Peak height hF(L) for q 5,6,8 Potts models.
Open squares for q 8 were obtained by Swendsen-Wang algo-
rithm; all others by Metropolis algorithm.

is linear in g near the critical point, there is a built-in
check for the importance of corrections to scaling. The
exponent P/v can be obtained by measuring the separa-
tion of the minima X~ —L2 at T, which behaves as
L ~~' (see Fig. 6). The main errors arise from the loca-
tion of T„about 0.1%.

The technical problem of computing F(X,g, L) on the
transition line for several values of L and g is solved by
the methods of Ref. 9. For the q &4 Potts models,
L=E and g is fixed by the value of q. For q ~4, g is

taken to be zero since the system scales to a Gaussian
theory. ' It is necessary to be at T, (L) defined by
F(E~,L) =F(E2,L). This is done by finding T„(L)
reasonably accurately and performing one long simula-
tion of Sx10 MC steps to obtain good statistics. The
data were smoothed by fitting with an eighth-order poly-
nomial and extrapolated to T, (L). System . sizes were

limited to L ~ 60 in 2D and L & 14 in 3D by the com-
puter time available since good statistics are much more
important than large system sizes. The statistics and the
errors are worst for q=8 since that has the strongest
first-order nature and the system cycles over the avail-
able states less frequently. We repeated the simulations
for this case using the Swendsen-Wang algorithm and
obtained identical results for /)F within numerical accu-
racy. As an additional check, we also studied the q=3
Potts model in 3D and found an unambiguous increase in
/). F with increasing L, verifying the first-order nature of
the transition. '

The Ising-model simulations for F(M;g, L) are carried
out in the same way at h =0 because of symmetry. The
simulation at each L was done close to the critical point
g=0 and data at nearby g found by extrapolation. This
procedure yields very good estimates of v but some error
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FIG. 3. Free energy F(T, (L)) for q=4, 5, 6,8 Potts models
for L =32. Bottom curve is q =8 data smoothed by polynomial
fit. The energy scale is normalized to unity for complete order.

FIG. 5. S=dAF/dT-L '" for Ising models in critical re-
gion.
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FIG. 6. M' (L) -L --'s~" at T, for Ising models.

in T, and hence in 2P/v. This can be reduced at the ex-
pense of much more computer effort by doing an in-

dependent simulation at each T.
To conclude, we have a powerful numerical method

for finding the nature of a transition because the qualita-
tive behavior of /JF(L) is characteristic of the type of
transition. At a second-order transition, good estimates
of the critical exponents can be obtained. Latent heats
are not accessible since we have been unable to overcome
the crossover problem at L-g. The computer time and
power required are moderate. It remains to be seen if
the method can be successfully applied to systems with a
continuous symmetry.
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