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The spectral density of temperature fluctuations in an anisotropic, heated turbulent channel flow is
studied experimentally using a new optical technique. The spectrum in the direction transverse to the
flow shows an equilibrium subrange behavior characteristic of isotropic flows with a wave-number depen-

dence of ®y(k,) ~x, '3

, whereas in the flow direction, ®s(xy) ~ K-

~93. This difference is shown to re-

sult from the dominance of the mean strain rate over the turbulent strain rate field at low wave numbers,
and the observed slopes are explained on dimensional grounds.

PACS numbers: 47.25.Cg, 42.30.Kq, 47.60.+i, 47.80.+v

In 1941, the concept of an “inertial subrange” was
first introduced by Kolmogorov! to describe that portion
of the energy spectrum E(x) of the turbulent velocity
fluctuations in which energy was neither being input to
the flow by external sources nor being dissipated by the
effects of viscosity. By postulating the existence of an
energy cascade in this subrange in which larger scales of
motion transfer energy to smaller scales at a rate deter-
mined only by the rate of viscous dissipation ¢, Kolmo-
gorov showed that for a locally isotropic turbulent veloci-
ty field, the energy (per unit mass per unit wave number)
should depend only on ¢ and the local wave-number
magnitude as E(x)~¢e??x 733 This behavior is valid
for that portion of the spectrum in which the wave num-
ber is less than the Kolmogorov microscale, x;=/(e/
v beyond which the effects of viscous dissipation be-
come important. This x ~%* dependence has been
verified by numerous experiments where the assumption
of local isotropy can be considered to be valid. The clas-
sic example is the experiment of Grant, Stewart, and
Moilliet? in which the energy spectrum in a very-high-
Reynolds-number tidal flow was measured over several
decades in wave-number space.

Analogous results have been obtained concerning the
spectra of dynamically passive scalars such as tempera-
ture or species concentration convected by a turbulent
flow. Obukhov? and Corrsin* independently predicted
the existence of an “inertial-convective’ subrange in the
spectrum of a passive scalar quantity 6, in direct analogy
to Kolmogorov’s inertial subrange for the velocity fluc-
tuations. In the inertial-convective subrange, the power
spectrum I'(x) of the scalar fluctuations was shown to be
of the form I'(x) ~ye ~'3k 733, where y is the rate of
dissipation of energy of the scalar fluctuations. This
spectral behavior has been verified in the experiments of
Gibson and Schwarz® for both temperature and concen-
tration fluctuations in grid-generated turbulence and the
experiments of Becker, Hottel, and Williams® which
measured concentration fluctuations in a turbulent jet.

In the present paper, new results are presented which
suggest that the inertial-convective subrange can be ex-
tended in a generalized form to lower wave numbers
where the effect of the mean strain rate field of the flow
generates structures of considerable anisotropy. This in-
herent anisotropy forces us to abandon the isotropic
spectral functions E(x) and I'(x) in favor of the three-
dimensional spectral densities ®,(x) and ®,(x), which
reflect the reality that the spectra for the lower-wave-
number components must be a function of the coordinate
direction.

The idea of extending the inertial-convective subrange
to include the largest, energy containing eddies seems to
have been first suggested by Heisenberg,” though with-
out any discussion of anisotropy. Batchelor® also adopt-
ed this idea and employed the three-dimensional spectral
density in studying the asymptotic behavior of the spec-
trum at the lowest wave numbers (x— 0), those contain-
ing very little energy. The region of the spectrum exam-
ined in the present paper, by contrast, concerns those ed-
dies which do contain most of the energy and are large
enough to be influenced directly by the mean strain rate
of the flow.

The form of the spectral density ®¢(x) in the inertial-
convective subrange can be rather simply formulated on
dimensional grounds. The spectral density has dimen-
sions of energy per unit mass per unit volume in wave-
number space (L°T ~2). Within the inertial-convective
subrange, an equilibrium exists in which the rate of ener-
gy input to eddies of wave number « is equal to the rate
at which energy is transferred to smaller scales. This
transfer of energy can occur either from the mean flow
directly to the turbulence or by transfer from larger
scales to smaller scales. In either case, the mechanism of
energy exchange is the same. The eddies are exposed to
a strain rate field which consists of an anisotropic mean
component S(x) and a locally isotropic turbulent com-
ponent s(x). Energy is transferred when an eddy is
aligned with the local strain rate vector and stretching of
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the vorticity field occurs. The strain rate has dimensions
of T ™', and its reciprocal is therefore the response time
with which eddies equilibrate with the imposed strain
rate field. The larger the strain rate, the shorter the time
for equilibration.

In general terms, then, the spectral density can be for-
mulated as

(energy flux) (response time) s ~'

(wave number) > K

(1)

‘De(l‘) -~ 3
For ®y(x), the energy flux is identified with the dissipa-
tion rate of the scalar fluctuation energy y, whereas for
@, (x), it is the viscous dissipation rate ¢. The appropri-
ate response time is determined by the nature of the ve-
locity field. For a locally isotropic turbulent field,
s(k)~e'"Pk?? (see, for example, Tennekes and Lum-
ley®). For x large enough, s(x)>S(x) in all coordinate
directions. The spectral density then depends only on
wave-number magnitude as

13 2/3y =1
¢9(K)~Z(—6K3—)~XE_I/3K_”/3. 2)
K

This can, of course, be directly compared with the origi-
nal result of Obukhov and Corrsin by integrating over
two wave-number dimensions, reproducing the one-
dimensional spectral function I', which is only a function
of wave-number magnitude:

F(0) =P Pay(x)d 2k~ ye x5 (3)

At higher wave numbers it is known that s(x) cannot
increase indefinitely with x but is limited by viscosity to
a maximum value of order (e/v)"/2. Batchelor'® showed
that for this *““viscous-convective” subrange in the case of
small scalar diffusivity, T'(x) ~yv'/?¢ "2 ~'. The cor-
responding spectral density based on this limiting strain

rate takes the form

—12_1/2y =1
d)g(x)—vﬂ———i—)———»xv'/zs"/zx'g“. 4)
K

Again, ['(x) is related to ®»(x) by a factor of x?, repro-
ducing Batchelor’s original result.

On the low-wave-number end of the inertial-convec-
tive subrange, we can apply the same dimensional
reasoning. In this regime, the three-dimensional nature
of the spectral density must be employed, since the ap-
propriate strain rate now depends on the coordinate
orientation. In a flow with pure strain, the orientation
dependence is straightforward. If a maximum extension-
al strain stress exists in one direction (a contracting noz-
zle, for example), it is in that direction that the energy
transfer from the mean flow occurs and in that direction
that the vorticity field of the large eddies will be aligned.
In a shear flow such as the present channel flow, howev-
er, there is a mean strain rate plus a mean rotation rate.
The principal axes of the strain rate tensor are oriented
at 45° to the flow direction and to the wall normal. The

pure strain in this direction is the source of the energy
transfer from the mean flow to the large eddies. The ro-
tation rate of the flow then rotates vector components of
vorticity oriented normal to the wall into the flow direc-
tion. The resulting large eddies are therefore oriented in
the flow direction. Note that there is no corresponding
first-order term which rotates longitudinal vorticity com-
ponents away from the flow direction. This effectively
allows a decomposition of ®y(x) at low wave number
into orthogonal components parallel and transverse to
the flow direction, as mixing between these components
occurs on a slower time scale based on s ~' (k).

In the flow direction x, as k, becomes small, $>s(x)
and Eq. (1) becomes

D) ~xS ki ~2S "'k (5)

This defines a new equilibrium region of the spectrum,
the anisotropic equilibrium range, where the largest ed-
dies are in equilibrium with the mean strain rate field
rather than with the turbulent strain rate field as is the
case for the higher-wave-number part of the inertial-
convective subrange.

In the directions transverse to the flow, however, there
is no mean strain rate component. The strain rate field
in this direction is simply the random component s(x).
The spectral density in this direction is then the same as
in Eq. (2). As far as eddies oriented transverse to the
flow are concerned, the strain rate field they are exposed
to is indistinguishable from that of an “‘isotropic’ flow.
The spectrum, therefore, has the same behavior in the
inertial-convective subrange, even in an anisotropic flow.

The relations given in Eqs. (2) and (5) have recently
been verified experimentally using a new optical tech-
nique which allows us for the first time to obtain ®(x)
directly. The technique is described in detail in Refs. 11
and 12. In brief, a fully developed turbulent channel
flow with a Reynolds number based on channel width,
Rep =16000, is traversed by a near-diffraction-limited
laser beam. The initially uniphase beam acquires phase
and amplitude variations which correspond to the
refractive-index field, which in the present experiments is
proportional to the fluctuating temperature field of the
flow. The beam is brought to a focus with a positive lens
and, as is well known from Fourier optics, produces an
intensity distribution in the focal plane which is directly
related to the Fourier transform of the 2D intensity dis-
tribution in the aperture of the lens. The coherent back-
ground illumination, which is many orders of magnitude
larger than the scattered intensity field, is removed by
exploiting the photorefractive properties of BaTiO; as a
high-pass temporal filter.'3"!> The BaTiO; effectively
scatters out the coherent portion of the beam and allows
the incoherent portion corresponding to the spectral den-
sity of the turbulence to pass through unaltered.

The intensity distribution generated in the focal plane
is directly proportional to the two components of ®y(x)
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Photograph and contours of 2D spectral density,

which are transverse to the beam propagation direction.
In the present experiments, the flow is taken to be in the
x direction and the beam propagates in the z direction.
The components of ®(x) thus measured are those in the
x and y directions (parallel and transverse to the flow).
Figure 1 shows a digitized photograph of ®(x, x,) ob-
tained with this technique. The two peaks in the spec-
trum at normalized wave numbers x,D = X 2 corre-
spond to the largest allowed transverse scales of motion
which are of the order of the channel thickness D. Note
that no such peak can be resolved in the flow direction,
as the largest scales are significantly larger than the
channel width D. Directional spectra in the x and y
directions corresponding to Egs. (2) and (5) are shown
in Fig. 2. The transverse spectrum has a slope of ap-
proximately — % and the longitudinal spectrum — § as
expected. The region of ®4(x) shown in Fig. 2 is the
low-wave-number portion. It is expected that for
higher-wave-number components, the slope in the longi-
tudinal spectrum will become asymptotic to — 4§ at a
value of x where s(x) = S. Using the isotropic relations
s(k)~€'?x?3 this transition will occur at ki
~S%2/¢'2. An increase in the value of the mean strain
will therefore generate anisotropy down to smaller scales.
This suggests that the turbulent spectrum will be of the
form shown in Fig. 3, where the longitudinal spectra are
shown normalized at high wave numbers. Increasing
mean strain moves the peak in the spectrum toward
lower wave numbers due to the increased vortex stretch-
ing of the largest eddies, and the isotropic cutoff moves
toward higher wave numbers. Spectra of transverse
components as well as the spectrum of isotropic tur-
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FIG. 2. Directional spectra in the transverse (y) and longi-
tudinal (x) directions.

bulence are also contained in Fig. 3 as the limiting case
of §— 0. Though the present discussion pertains direct-
ly to the spectra of passive scalars, analogous results are
expected for the low-wave-number behavior of the iner-
tial subrange of turbulent velocity fluctuations as well.
An interesting comparison with the present results can
be made with the recent numerical results of Lesieur and
Rogollo.'®!” In their large-eddy simulations, the spectra
of decaying isotropic turbulent velocity and temperature
fields are studied. A x ' region is observed to develop in
the low-wave-number portion of their 1D temperature
spectrum (corresponding to the x> region observed
here for the longitudinal component of the spectral den-
sity). In their analysis, the form of the low-wave-
number spectrum is described by an expression which is
essentially identical to Eq. (1), where their response time
is identified with the large-eddy turnover time, (u?)/e.
They arrive at the same conclusion that the x ! region
originates due to the straining by the large-scale
motions. The difference between these numerical simu-
lations and the present results, however, is that here the
large-scale straining motion is identified with the mean
strain rate of the flow, not the strain rate of the large-
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FIG. 3. Form of longitudinal spectra for increasing mean
strain rate.
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scale turbulent eddies. The fact that the transverse spec-
trum does not exhibit a k ~* region in the spectral densi-
ty indicates that the large-scale turbulent motions are
not the dominant source of this low-wave-number behav-
ior. In the absence of a mean shear, however, the strain
field of the large eddies will be the dominant mechanism.

For the same reason, namely, the absence of a mean
shear component, the large-eddy simulations do not show
a corresponding x ~! region in the spectrum of the veloc-
ity fluctuations, whereas the present analysis suggests
that this should be the case. Previous studies such as the
turbulent pipe flow measurements of Perry and Abell'®
and the atmospheric boundary layer measurements of
Pond et al.'® demonstrated that a x ~! region does exist
at low wave number for the longitudinal velocity spec-
trum. In neither of these studies, however, is there much
discussion as to the origin of this behavior. The present
technique with its unique ability to directionally resolve
the spectra of anisotropic shear flows lends strong sup-
port to the idea that it is the transfer of energy directly
from the mean strain rate of the flow that is responsible
for this observed low-wave-number behavior in all of
these studies.

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract No. W-7405-Eng-48.
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