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Using a neural-network classifier we are able to separate gluon from quark jets originating from
Monte Carlo-generated e e ~ events with 85%-90% accuracy.
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In this Letter, we demonstrate how to separate gluon
and quark jets using a neural-network identifier. Being
able to distinguish the origin of a jet of hadrons is impor-
tant from many perspectives. It can shed experimental
light on the confinement mechanism in terms of detailed
studies on the so-called string effect' and related issues.
Also, a fairly precise identification of the gluon jet is re-
quired for establishing the existence of the three-gluon
coupling in e Te ~ annihilation.? To date the gluon-jet
identification has been done by making various cuts on
the kinematic variables ranging from just identifying the
jet with smallest energy as the gluon jet! to more elab-
orate schemes.>* Such procedures are often based on
the entire event rather than just a single isolated jet. It
would be desirable to focus on the latter alternative given
that in many situations “global” quantities like total jet
energies are less well known. One such example is jets
produced in high-pr hadron-hadron collisions.

A straightforward method for identifying the jets
would be to find the functional mapping between the ob-
served hadronic kinematical information and the feature
(quark or gluon). This reduces the problem from an
expert’s exercise to a ‘“‘black box” fitting procedure. This
is exactly what the neural-network approach aims at. It
has the advantage over other fitting schemes in that it is
very general, inherently parallel, and easy to implement
in custom-made hardware with its simple processor
structure. The latter feature is very important for real-
time triggering.

We confine our studies to Monte Carlo-generated
ete ™ events using the Lund Monte Carlo model. To
some extent this induces a ‘“‘chicken-and-egg” effect to
our studies; some of the physics one wants to study is al-
ready there. This effect can be minimized by limiting
ourselves to kinematical quantities that are most model
independent, e.g., considering the fastest particles only.

Although this paper is limited to the separation of
gluon and quark jets, it is clear that the methodology
could be used in a variety of different triggering situa-
tions.

The neural-network learning algorithm.— The basic
ingredients in a neural network are neurons n, and con-
nectivity weights w;;. For feature recognition problems
like ours the neurons are often organized in a feed-
forward layered architecture (see Fig. 1) with input

(xx), hidden (h;), and output (y;) nodes. Each neuron
performs a weighted sum of the incoming signals and
thresholds this sum with a “sigmoid” function g(x)
=0.5[1+tanh(x)]. For the hidden and output neurons
one has

h;=g(a,/T) (1)
vi=g(a;/T), (2)

where the “temperature” T sets the slope of g and the
weighted input sums a, and a, are given by Dk Ok Xk
and X w;jh;, respectively.

The hidden nodes have the task of correlating and
building up an ““internal representation” of the patterns
to be learned. Training the network corresponds to
changing the weights w,; such that a given input parame-
ter x” gives rise to an output (feature) value y? that
equals the desired output or target value t?. A fre-
quently used procedure for accomplishing this is the
back-propagation learning rule® where the error func-
tion

E=: XX (7 =17 (3)
p ot
is minimized. Changing w;; by gradient descent corre-
sponds to>

Aw;;=—n8h,+aro® (4)
for the hidden to output layers, where §, is given by

§i=Wi—1)g'(a;). (5)
Correspondingly, for the input to hidden layers one has

Awy=—nX 0,8 (a)xi+arwil. (6)
i
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FIG. 1. A feed-forward neural network with one layer of
hidden units.
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In Egs. (4) and (6) n is a learning strength parameter
and we have also included so-called momentum terms
Ao and aAwd® in order to damp out oscillations.
This procedure is repeated for each pattern p until the
network has learned all patterns to a satisfactory level.

What is happening in the network is that sigmoids are
being added up, which with alternating signs emulate
“bumps.” Adding bumps is very similar to decomposing
an arbitrary function into Gaussians, which is a well-
known method for finding a functional mapping.

The Monte Carlo data.— The jets used to test our ap-
proach were taken from Monte Carlo-generated e *e ~
events at different energies using the JETSET 7.2 (Ref. 6)
and ARIADNE 3.1 (Ref. 7) programs. In the ARIADNE
program, the partonic phase of the events is simulated
using the color-dipole approximation,® producing partons
which are then fragmented into hadrons using the string
fragmentation model as it is implemented in the JETSET
program. In JETSET the formed hadrons are also allowed
to decay. All parameters in these two programs were set
to their default values. This color-dipole approximation
is dual to the parton-shower approach,'® which is the de-
fault option in JETSET 7.2, and it generates the same
physics.

We then used a clustering algorithm to find the jets in
each event. In this algorithm, all particles that are
“closer” to each other than a certain cutoff are clustered
together into jets. The ‘‘closeness” can be defined in
many ways. We have preferred to use the relative trans-
verse momentum which is the default option in the algo-
rithm LUCLUS in JETSET 7.2.

Having produced the jets we define those two which
are closest (in the same respect as in the clustering
above) to the initial quark and antiquark, respectively, to
be quark jets, and the rest of the jets in the event to be
gluon jets.

We have studied events of two different center-of-mass
energies; 29 and 92 GeV. For each energy we generated
two different sets of events.

Forced three-jet events. Exactly three jets are re-
quired with angles between the jets larger than 30°.
There is no cut in the clustering algorithm.

Multijet events. The cut in the clustering algorithm is
set to 2.5 GeV, requiring at least three jets.

For both alternatives we also required that each jet
consisted of more than four particles and that their ener-
gy was larger than one-tenth of the total center-of-mass
energy.

In addition, we generated one set of events at 55 GeV
with the same clustering and cuts used in Ref. 3 for more
direct comparison with experimental situations.

For each of the different data sets we use two different
approaches of presenting the jets to the network. One is
to show only the four-momenta (py,Ey) of the four lead-
ing particles in the jet. In this way we do not reveal too
much about the structure of the fringe of the jets.
Hence, e.g., the string effect can be studied in a fairly
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model-independent way. In the other approach we show
only the total energy and momentum of the jet together
with the four-momentum of its leading particle. The
model dependency is thus reduced when studying details
of the jet structure, such as asymmetries. The network
sees only one jet at a time and knows nothing about the
total number of jets in the event or their relative spatial
orientation.

In the first case we use a three-layered (see Fig. 1)
feed-forward network with 4x4 input nodes, 6 hidden
units, and 1 output unit. In the second case we use a
network with 6 input nodes, 6 hidden units, and 1 output
unit. The network performance is not very sensitive to
the number of hidden units. The output unit is used to
code the jet identity; 1 for gluon and O for quark. We
use a strict middle-point condition; if the output is
> 0.5, the jet is considered to be a gluon jet and if the
output is <0.5, the jet is considered to be a quark jet.

Each data set is divided into two parts; one that is
used for training the network (training set) and one that
we use for testing the ability of the network to classify
the jets (test set). We thus make sure that the network
is tested on patterns that it has never seen before and
that we really measure its ability to generalize. The
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FIG. 2. (a) Network performance as a function of training
epochs using a “multiple-jet” data set with heavy quarks and a
center-of-mass energy of 29 GeV. The four-momenta of the
leading four particles as input. (b) The first epoch displayed in
detail. The network is updated for every 10 patterns. The pa-
rameters used are a =0.5, T =1, and n=0.0005.
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TABLE 1. Percentage correct classifications of jets using the four-momenta of leading four
particles as input. The parameters used to obtain these results were a=0.5, 7=1, and
n=0.0001. The network was run for 100000 learning passes.

With heavy Without heavy

Vs Training set/ quarks quarks
(GeV) Set type test set (%) (%)

92 Forced three jet 12000/6000 86 87

92 Multiple jets 10000/8000 88 90

29 Forced three-jet 12000/6000 86 87

29 Multiple jets 11000/7000 87 88

55 Reference 3 12000/6000 89 cee

weights in the network are initialized at random with
values in the range [—0.1,0.1]1. The network is then
trained by taking (at random) 10 jet patterns, half
gluons and half quarks, from the training set. These 10
patterns are then run through the network whereupon
the weights are updated and 10 new patterns are taken,
and so forth.

In most cases the energy for the leading particle in a
gluon jet is lower than for a quark jet. The network sees
this very quickly and is able to correctly predict 85% of
the jets after seeing about 4000 patterns, only + of the
total training set (see Fig. 2). The wrong classifications
are approximately equally distributed among quark and
gluon jets.

Leaving out the jets originating from heavy ¢ and b
quarks makes it a bit easier for the network to separate
quark jets from gluon jets (see Tables I and II). Heavy
quark jets in general are a little broader than light ones
due to the decay of heavy mesons, they are therefore
more difficult to separate from the gluon jets whose
prime characteristic is that they are broader than quark
jets. Heavy quark jets are, on the other hand, more easy
to separate with other methods (looking for semileptonic
decays, etc.) so we do not feel that leaving them out in-
troduces any severe handicap for our method. The net-
work also performs better if it trains on a multiple-jet set
than if it trains on a forced three-jet set. This is expect-
ed since the forced three-jet clustering certainly produces
both broad quark jets and heavy gluon jets. We also

used the network to tell which one of the jets in a three-
jet event (from the 55-GeV jet set) that originated from
the gluon (we chose the jet with output closest to 1 as
the gluon jet). The network was correct in 87% of the
events. It is remarkable that it hardly mattered if the
network had been trained on 92-, 55-, or 29-GeV events;
it did well anyway, indicating that the relative signature
of quark and gluon jets scales.

In order to investigate the model dependence of our re-
sults we have also considered two other Monte Carlo
(MC) models,"" JETSET 7.2 (parton shower)® and
HERWIG (clustering).'? It turns out that if the network
is trained on a data set generated by one model and then
tested on data from another model, at most 1%-2% in
performance is lost. In other words, the procedure is
very independent of the MC model used.

All exercises so far have taken place in an ideal world
with no acceptance limitations, all particles detected, etc.
In order to get a feeling for how our approach might
work under real experimental conditions, the MC models
have been processed through the DELPHI detector simula-
tor."> We find only a modest degradation in perfor-
mance (~3%), which is very encouraging.

We have successfully demonstrated how neural-
network techniques can be used to distinguish between
gluon and quark jets in e e ~— hadrons. After learn-
ing, the network successfully identifies 85%-90% of jets
it has never seen before. The corresponding rate using
assignment based on energy' with our data set is ~65%.

TABLE II. Percentage correct classifications of jets using the total energy and momentum
of the jet plus the four-momenta of the leading particle as input. Parameters: a=0.5, T=1,
and n=0.0001. The network was run for 100000 learning passes.

With heavy Without heavy

Vs Training set/ quarks quarks
(GeV) Set type test set (%) (%)

92 Forced three jet 12000/6000 86 87

92 Multiple jets 10000/8000 89 91

29 Forced three jet 12000/6000 87 87

29 Multiple jets 11000/7000 88 89

55 Reference 3 12000/6000 91 ce
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This amazingly simple nonexpert procedure thus yields a
world record score on this problem. However, it should
be stressed that a similar order-of-magnitude perfor-
mance presumably could be obtained with another kind
of expansion. But we reiterate the opinion that the
neural-network approach has a clear edge given its gen-
eral structure, parallelism, and closeness to simple hard-
ware. The question of how well the network, in princi-
ple, can perform given a certain data set naturally arises.
The upper limit of performance is given by the Bayesian
limit, '* which is obtained from the minimal overlap be-
tween the two multidimensional distributions. An esti-
mate of this limit can be obtained numerically within
realistic CPU consumption by reducing the accuracy of
the kinematical variables. Work in this direction is un-
der way. "

Also, an upcoming challenge is to apply our method to
jets formed in hadron-hadron collisions.!! Preliminary
results here indicate a 70% generalization capability,
which is lower than in the e Ye ™ case. We interpret this
performance difference as due to simple correlation be-
tween jet energy and quark or gluon identity from the
e e ~ matrix element which is absent in hadron-induced
reactions.
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