
VOLUME 65 10 SEPTEMBER 1990 NUMBER 11

Scattering for 1D Schrodinger Equation with Energy-Dependent Potentials
and the Recovery of the Potential from the Reflection Coefficient

Tuncay Aktosun

Department of Mathematics, Southern Methodist University, Dallas, Texas 75275

Cornelis van der Mee

Department of Physics and Astronomy, Free University, Amsterdam, The Netherlands
(Received 16 April 1990)

We consider the 1D Schrodinger equation with a potential proportional to energy. When the spatial
part of the potential is twice continuously diA'erentiable, is less than 1 everywhere, and satisfies a certain
integrability condition, we compute the scattering matrix. For the same class of potentials, under the
further assumption that the potential is non-negative, we obtain the potential from one of the reflection
coefficients.
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Consider the one-dimensional Schrodinger equation

d2@(k,x) +k t!t(k,x) =k V(x) vt(k, x),
X

where x E IR is the space coordinate, k E IR is energy,
and k V(x) is the energy-dependent potential. For con-
venience we will call V(x) the potential; V(x) is as-
sumed to decrease to zero sufficiently fast as x + ~.
Thus, there are two solutions of (1), which we will call
the physical solutions vrt from the left and vt„ from the
right, which satisfy

Ti(k)e'""+o(l ), x—~,
e' "+L(k)e ' ."+o(1) x~ —co

tltt(k, x) ='

value will be denoted by T(k).
The Fourier transformation from the frequency (k)

domain into the time (t) domain changes (1) into the
wave equation

tt

t)x '
1 8 u

c(x)' t)t'
(2)

where c(x) =1/41 —V(x) is the wave speed. Equation
(2) describes the propagation of waves (e.g. , sound
waves or elastic waves) in a medium where the wave
speed depends on position. To have a meaningful wave
speed we assume that V(x) & 1 everywhere. We will

also assume that V(x) is twice continuously diA'er-

entiable and that V(x) and G(x) are integrable, where
G(x) is defined as

vt„(k, x) = '
' "+R(k)e' '+o(1), x —~,

T„(k)e '"'+o(1), x G( )
1 V"(x) + 5 V'(x)
4 [1 —V(x)]'' 16 [1 —V(x)]'t' (3)

Here TI and T, are the transmission coefficients from the
left and from the right, respectively, and L and R are the
reflection coefficients from the left and from the right,
respectively. The scattering matrix S(k) is defined as

T, (k) R(k)
r (k) T (k)

When V(x) is real, we have Tt =T, and the common

These are all sufficient assumptions and may perhaps be
relaxed.

The scattering problem for (1) consists of finding the
scattering matrix when the potential is known; the in-
verse scattering problem is to recover the potential V(x)
when the scattering matrix, or equivalently one of the
reflection coefficients, is known.

Equation (1) is related to the regular Schrodinger

1990 The American Physical Society 1289



VOLUME 65, NUMBER 11 PHYSICAL REVIEW LETTERS 10 SEPTEMBER 1990

equation

+k p(k, x) =V(x)&p(k, x) . (4)
dx'

Let us compare (1) and (4). Equation (4) is an eigen-
value problem for the Hamiltonian —d /dx +V(x),
whereas (1) is not an eigenvalue problem; in (4) the
solutions with the appropriate asymptotic behavior as
k ~ ~ and those with the appropriate asymptotic be-
havior as x ~ are related to each other in a simple
manner, whereas for (1) this is not apparent. These are
the main reasons why the scattering and inverse scatter-
ing problems for (1) are more difficult. We overcome
these difficulties by finding two linearly independent
solutions of (1) with the appropriate asymptotic behavior
as k + ~ and by showing how these two solutions are
related to the physical solutions yi and y, .

There have been two methods to deal with the inverse

problem for (1). The first method was proposed by
Ware and Aki, and it utilizes transforming (1) into the
usual Schrodinger equation by using the travel-time
coordinate

y = [1 —V(g)] '1 dg

and the new wave function

y(k, y) = [1 —V(x)] ' 'y(k, x) .

Then (1) is transformed into the Schrodinger equation

d
, +k'~=Q(y)~,

where the new potential Q(y) is related to the potential
of (1) by

(s)

1290

S V'(x) ' I V"(x)
16 [1 —V(x) ] 4 [1 —V(x) ]

We use the prime to denote the derivative with respect to
x. Then, Ware and Aki used the Marchenko method to
recover Q(y) from the Fourier transform of the reflec-
tion coefficient. Then the potential V(x) of (1) was as-
sumed to be obtained from Q(y) by inverting (5). How-
ever, the recovery of V(x) from Q(y) by inverting (5)
presupposes the knowledge of V(x), and thus the method
of Ware and Aki does not give V(x) when the scattering
matrix is known. In their method Ware and Aki as-
sumed that the potential has compact support.

The second method was proposed by Razavy, and it
uses the spatial coordinate x rather than the travel-time
coordinate y. Razavy's method is based on the iterative
technique of Jost and Kohn and is more suited to find

the potential approximately; in this method the potential
is expressed as an infinite series where each term is an
integral of some function of the reflection coefficient.
However, the terms in the series become complicated
even after the first term and the convergence is not as-
sured.

We solve the scattering problem by computing S(k)
when V(x) is given. The solution of the inverse problem
given here is more straightforward in the sense that we

Z, (k,x) =1+
4X X 1 (k;x, g) Z 1 (k, g)d(, (6)

X2(k;x, g)Z2(k, g)dg,

where the kernels Xl and X2 are bounded in x and g and
are given by

z2(k, x) =1— (7)

Z, (k;x, g) =,1

1
1
—exp 2ik ii —V(ri) dri

x G(g),

1+2(k;x, ()= — . 1 —exp —2ik il —V(ri) dri
2g'k - ~ &x

xG(g) .

Here G(x) is the quantity given in (3).
The physical solutions of (1) can be written in terms

of the functions given in Theorem 1 as

yl(k, x) =T(k)exp ik [1 —il —V(ri)] dri

x Yl (k, x)z1 (k,x),

y, (k,x) = T(k)exp ik [1 —il —V(ri)] dri

x Y2(k, x)Z2(k, x) . (9)

Note that when V(x) is integrable, 1
—il —V(x) is al-

so integrable because
l

1
—il —V l

=
l Vl/(1+i1 —V)

~
I vl.

It is known" that the potential in (1) supports no
bound states when V(x) ( 1. The direct scattering prob-

use the spatial coordinate rather than the travel-time
coordinate and find V(x) directly. We formulate the in-

verse scattering problem for (1) as a Riemann-Hilbert
problem. Once the problem is posed as a Riemann-
Hilbert problem, it can be solved by several methods
such as the Marchenko method, ' and Gel'fand-Lev-
itan method, ' the Wiener-Hopf factorization method,
and the Muskhelishvili-Vekua method. '

Using techniques similar to those used by Erdelyi, "
we have the following result.

Theorem 1.—When V(x) is twice continuously
differentiable, V(x) and G(x) are integrable, and V(x)
(1, the Schrodinger equation (1) has two linearly in-

dependent solutions Yl (k,x)Z i (k, x) and Yq (k,
x)Z2(k, x) such that

exp [ik f0 il —V(g ) dg 1

[1 —V(x)] '"
exp [ ik f0

—il —V(g) d(1

[1 —V(x)] '"
and for each x, Zl(k, x) and Z&(k, x) are analytic in k
in the upper half complex plane C+, continuous in k for
k E C+ UR, Zi(k, x) =1+0(1/k) and Z2(k, x) =1
+O(1/k) as k ~ in C+ UR, Z1(k, + ~) =1 and
Z2(k, —~) =I, Zi(k, +~) =0 and Zq(k, —~) =0,
and Zi(k, x) and Zz(k, x) satisfy the integral equations
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lem is solved as follows. When the potential V(x) is given, we obtain G(x) from (3), Zl(k, x) from (6), and Z2(k, x)
from (7). Then from the large-x asymptotic behavior of (8) and (9), the transmission and reflection coefficients are ob-
tained as

T(k)
[1-41-V] 1+

Q —oo

G(t)Z i (k, t)
2ik

% oo

T(k)
=exp ik [1 —Jl —V]

G(t)Z2(k, t)
2&

exp —2ikt + 2ik „[1—41 —V] dt .

From the above expressions, as ~k ~

~ we obtain

L(k) ( P= exp ik [1 —dl —V] ik — [1 —v'1 —V]
T(k) J —oo

" G(t)Z i (k, t)
exp 2ikt —2ik [I —41 —Vl dt,

2ik 4 Q

R(k) "o p oo= —exp ik [1 —41 —V] —ik [1 —41 —Vl
T(k) —oo 4p

G(t)Z2(k, t)
X

2ik

T(k) =exp i k „—[I —41 —V] 1
— dt + O(1/k ), k E C +

U IR,
2ik

L (k) = —exp —2ik

We also have

"" G(t)
[1 —v'1 —V] . exp 2ikt —2ik [1 —Jl —V] dt+O(1/k ), k 6 IR,4 —oo 2ik 4Q

p oo " G(t)R(k) = —exp —2ik [I —41 —V] exp —2ikt+2ik [1 —Jl —V] dt+O(1/k ), k E IR.4p 2ik Jp

A oo

T(k) =1+—. dy e '" V(y) it(((k,y)
2i 4—

=1+—I dy e '"'V(y) y, (k,y),
2i 4-

k
L (k) =— dy e'"'V(y) i'((k,y),

2i "—

R(k) =— dy e '"'V(y) y, (k,y),
2i 4—

from which we obtain as k 0
oo

T(k) =1+— dy V(y)+O(k ), k E C+ UIR,2i~-
kL(k) =—. dye '"~'V(y)+O(k ), k E IR,
21

Z(k) = dye ""'—V(y)+O(k'),
2i ~--

The inverse scattering problem for (1), which consists
of the determination of V(x) from the reflection
coefficient, is an important problem. It is equivalent to
the determination of the wave speed c(x) from one of
the reflection coefficients and has many important appli-
cations in acoustic imaging, nondestructive testing, and
various fields of geophysics such as seismology. For the
class of potentials mentioned in Theorem 1 and under
the further assumption V(x)) 0, we show that V(x)
can be recovered uniquely from one of the reAection

coefficients. We will first formulate the inverse scatter-
ing problem for (1) as a Riemann-Hilbert boundary-
value problem. ' '

Since k appears as k in (1), y(( —k, x) and (t(„(—k,
x) are also solutions of (1) whenever y((k, x) and
y„(k,x) are solutions. The solution vectors

y(( —k, x)
lt(( k x) ( k )

y((k, x)

are related to each other as

y( —k, x) =S(k) 'qy(k, x), k e R, (10)
where q =[~ (i] and S(k) ' denotes the matrix inverse of
S(k). Let us define

m((k, x) = e '-'tt(((k, x),1

T k

m, (k,x) = e'"y„(k,x) .
1

T k
Letting

m((k, x)
m(k, x) =

(k „)
we can write (10) as

m( —k, x) =A(k, x)qm(k, x), k 6 IR,
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where

T(k) —g(k)e 2'k-'

L-(k). -""-" T(k)

solve (13) by the Marchenko method. Let

dk
u (y) = [T(k) —1]e'"'

2z.

Under the transformation k —1/k, C and IRU [~j
are mapped onto themselves in a one-to-one manner.
Let us use the notation F(k) =F(—1/k) throughout.
Then we can write (12) as

dk8((x,y) = [m((k, x) —1]e
2z

dkg((x,y) = — &( —1/k)e 2i.eke(k&
27K

(14)

m( —k, x) =A(k, x)qm(k, x), k c R. (i 3)

It can be shown that m(k, x) is continuous in

k 6 C+ UR(IO], has an analytic extension in k to C+ for
each x, and m (k, x) = 1+O(1/k) as k ~ in

C+UIR([0], where we define 1=[I]. Similarly, m( —k,
x) has an analytic extension in k to the lower half com-

plex plane C for each x, is continuous in k 6 C Ullt,

and m ( —kx) = 1+O(1/k) and k ~ in C U IR.

Hence, (13) is a Riemann-Hilbert problem. We will

p oo

B((x,y ) =g((x,y) + dz g((x,y +z)8((x,z), y & 0,

dkB,b,y) = [m, (k,x) - I]e - k,"-"2n

dkgr(x y) = L( 1/k)e 2tx('keir~-- 2z

(is)

From the analyticity and asymptotic properties of
m(k, x) for k 6 C+ mentioned above, we have B((x,y)
=8„(x,y) =0 for y &0. Then the Riemann-Hilbert
problem (13), upon Fourier transformation, is equivalent
to the four equations:

8„(x,y ) =g„(x,y) +, dz g, (x,y+ z)8„(x,z), y & 0,
Q oo

8((x,y)+g, (x, —y)+u( —y)+ J dzg, (x, —y+z)B„(x,z)+ dz u( —y+z)8((x, z) =0, y & 0,
((I( oo fO g

8„(x,y)+g((x, —y)+u( —y)+ dzg((x, —y+z)B((x,z)+ dzu( —y+z)8„(x,z) =0, y &0,

(i 7)

(i 9)

where (16) and (17) are the uncoupled Marchenko
equations and (18) and (19) are the coupled Wiener-
Hopf equations. Let us write (16) and (17) in operator
form as

(2o)

recovered from (1) as

m(" (k, x ) + 2i km/(k, x )Vx
k'm, (k, x)

m,"(k,x)+ 2ikm„'(k, x)
k 'm„(k, x)

(2i)

where 8 E L (0, 00) is the unknown function and

g e L (0,~) is given. Here L (0,~.( is the Hilbert
space of square-integrable functions on (0, ~). We then
have the following result concerning the solvability of
(2o).

Theorem 2.—If the potential V(x) is twice continu-
ously diff'erentiable, V(x) and G(x) are integrable, and
0& V(x) & 1, then the operator 0 in (20) is self-adjoint
on L (0,~) and its operator norm satisfies Q~ & l.
Thus the Marchenko integral equations (16) and (17)
are uniquely solvable.

Since ~~9~~ & 1, (20) can be solved by using the Neu-
mann expansion 8 =Q„=OS "g. Once 8((x,y) and
B„(x,y) are obtained from the Marchenko equation, by
using 8((x,y) =8, (x,y) =0 for y &0;lnd using the in-
verse Fourier transform on (14) and (1S), we obtain
m((k, x) and m, (k, x) Then, .we have m((k, x)
=m(( —1/k, x) and m„(k,x) =m„( —1/k, x). The func-
tions m((k, x) and m, (k, x) obtained this way solve the
Riemann-Hilbert problem (13) if and only if 8((x,y)
and 8, (x,y) are also solutions of the Wiener-Hopf equa-
tions (18) and (19). Then, the potential V(x) can be

provided the middle and the right-hand side are equal
and independent of k. A difTerent way to obtain V(x) is
to exploit the large-k asymptotic behavior of m((k, x)
and m„(k, x). From (8), (9), and (11),we have

( lnm((k, x)
lim

+ oo k
—i lnm, (k,x)

lim+ oo

[i —41 —V(g)] dg, (22)4 .lc

[1 —41 —V(g) ] dg . (23)

Hence, instead of using (21), the potential can also be
obtained from (22) or (23) through differentiation, pro-
vided the same result is obtained from (22) and (23); the
condition that (22) and (23) lead to the same potential
V(x) is the analog of the 1D version of Newton's miracle
condition.

All the proofs and mathematical details of the results
outlined in this paper will be published elsewhere. '
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