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We predict a glass transition in the recently discovered flux-fiuid state of high-T, superconductors due
to topological entanglements. Two possible relaxation mechanisms are considered —single-flux-line
motion with relaxation time t~ -exp[exp[(A/d) ][, and collective motion of many flux lines with relaxa-
tion time r„~-exp[(A/d) 1, where A is the magnitude of transverse fluctuations of flux lines and d is the
intervortex spacing. This extremely slow relaxation enables the system of entangled flux lines to support
supercurrents in the presence of only a few strong pinning centers.

PACS numbers: 74.60.Ec, 74.40.+k, 74.60.6e

Regardless of the underlying microscopic mechanism
there is an exiting new property of high-T, superconduc-
tors: strong fluctuations due to small intrinsic coherence
lengths and high temperatures. In particular, these fluc-
tuations were predicted ' to be capable of melting the
Abrikosov flux lattice. A new entangled flux liquid state
occupying a significant part of the phase diagram of
Cu02-based superconductors was proposed. The flux
decoration experiments2 support this fascinating idea. In
a framework of conventional theory it was unclear how a
melted flux state could have no resistance. The reptation
model was used to describe the dynamics of this new
state leading to small, but finite conductivity. Below we
discuss the dynamics of this entangled flux state and con-
clude that it is frozen. This implies that a system of flux
lines has glasslike rather than fluidlike properties, such
as finite shear modulus at experimentally relevant time
scales. This modulus is due to topological constraints of
entangled magnetic fluxes because they cannot cross
each other. This topological glass is qualitatively differ-
ent from the models of pinned vortices, which also exhib-
it glassy behavior. '6

For a type-II superconductor in a magnetic field H
higher than some critical temperature-dependent field

H, ~(T), it is energetically favorable to allow some field 8
to penetrate the sample in the form of flux lines each
carrying a quanta po =hc/2e of magnetic field. This crit-
ical field H, ~ depends on the energy per unit length e~ of
a single flux line

H, / -4tte[/yu.

The number density of these lines is n =8/po and their
interspacing is

1= 1/v n = (Po/8 ) ' '

In conventional superconductors, these lines form an
Abrikosov lattice stable up to much higher fields H, 2(T)

2e~ l =H, ~ Pol/2tt = 50ktt T, (3)

at least near H, l.
In Fig. 1 we present a schematic drawing of melted

flux lines in a slab of thickness L aligned with Cu02
planes. These lines begin to entangle as soon as the rela-
tive displacement of their ends A in the a bplane-
(tangential to the magnetic field) exceeds the mean spac-
ing d between the flux lines. In equilibrium the root-
mean-square projection of the end-to-end vector of a flux
line in a liquid state onto the a bplane grows with the-

at which superconductivity is destroyed.
Electrical currents flowing past magnetic flux lines ex-

ert a Lorentz force on them. If this force causes the flow

of flux lines, the phase shift associated with their motion
leads to finite electric resistance of the sample. Zero
resistivity of the conventional type-II superconductors in

a magnetic field H between the two critical values

H, ~
& H & H, 2 is attributed to the finite shear modulus

of the Abrikosov lattice. This lattice is capable of with-

holding strains due to currents below some critical
current density in the presence of a dilute concentration
of strong pinning centers.

It was argued theoretically' and verified experimen-
tally that fluctuations in high-T, superconductors melt
the Abrikosov lattice at temperatures and fields distinct-
ly lower than H, q(T). How can supercurrents exist in a
system with melted flux lines? We demonstrate that to-
pological constraints in an entangled flux system lead to
an effectively glassy state and finite shear modulus at ex-
perimentally relevant time scales.

The reason topological interactions are important is
that the energetic cost for intersection of a pair of flux
lines even for a minimum distance l (interlayer spacing)
along the field direction can be quite high. ' For Bi-Sr-
Ca-Cu-0 l = 10 A, H, ~

= 80 6 at T=77 K, and this
energy cost is
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FIG. 1. Schematic of a disordered state of flux lines. The
interline spacing is d and the transverse fluctuations of fluxes is
A.

slab width L as

A„=(2nk, TL/. ,) '", (4)

where energy per unit length a3 is much smaller than sl,
reflecting the weak coupling between the planes. This
distance could be as large as A,„=1 pm for sample
thickness L 0.01 cm at temperature T =77 K, and
83 0.01ai =0.01H, |go/4n with H, i

= 100 G. We argue
below that if the tangential displacement A is larger than
a few interflux spacings d, the relaxation time of this en-
tangled state is practically infinite.

We shall analyze two possible mechanisms of relax-
ation —a single-flux-line motion and collective modes.
Let us consider first a single-flux-line relaxation mecha-
nism and calculate the time during which a typical flux
line diffuses a distance of order A along the a bplane. -

In order to move a distance of the order of its own size, it
has to disentangle from the neighboring flux lines. It
turns out that the trajectory of such disentanglement is
extremely complex. Since the a-b projection of a flux
line covers the area of order A, it is entangled with ap-
proximately nA (A/1) neighboring lines, where n is
the density of lines and d is their average spacing. All
these lines are entangled with each other as well.

Consider the simplest configuration of an entangled
pair of flux lines, such as lines AA' and 88' in Fig. l. In
order for the line AA' to follow the motion of its lower
end A' to the right, the top end A has to go around point
8 in the counterclockwise direction. In Fig. 2(a) we
sketch the projection of the flux line BB' onto the top
plane and the path of the end A of the line AA' around
point B.

A simple configuration of three entangled flux lines
CC', DD', and EE' is shown in Fig. 1. The path that the
top end C of the line CC' needs to cover in order to fol-
low the lower end C' to the right and disentangle from
lines DD' and EE' is presented in Fig. 2(b). Note that C
has to go twice around point E (once on the way towards
point D and once on the way back).

It is easy to see that in the dense system lines DD' and
EE' would be entangled with other flux lines and the to-
tal path of the end C in the top plane can be represented
by a random Cayley tree. The trunk of the tree is a ran-

FIG. 2. (a) Projection of the flux BB' onto the top plane and
the path of the upper end 8 of the flux line AA' around point 8
(thin line). (b) Projections of the flux line DD' and the top
part OE of the line EE' onto the upper plane. The path of the
top end C (thin line) becomes significantly more complicated
than the path of the end A in (a).

ri -exp[exp[(A/d) 2]] . (Sa)

So far we have analyzed the motion of a single-flux
line assuming others to be fixed. Next, we consider col-
lective modes that allow a given flux line to disentangle
and completely change its configurations with the help of
surrounding flux lines that rearrange appropriately. Let
us estimate the fraction of the system that has to be in-
volved in a collective attempt to release an entanglement
distance s(, away from the nearest surface, where

g, =d s3/kaT is the average vertical distance between
entanglements, and s is the number of entanglements be-
tween a chosen one and the surface along a typical flux
line.

Consider an entanglement between lines AA' and 88'

dom walk with (A/d) steps each of size d and root-
mean-square end-to-end distance A. There are random
branches leaving the trunk with branch points spaced on
average distance d apart. Each of these branches is a
random walk itself with step size 1 and could branch as
well.

The total length of the trajectory of point C is of the
order of the mass of the random Cayley tree, which is an
exponential function of the length of the trunk (number
of the branch generations) exp[(A/d) 2]. The number of
free branch ends in this tree -exp[(A/1) ] many times
exceeds the number of ends of the lines entangled with
CC'-(A/d) . This can be explained by the fact that
point C has to go around point E not only on its way
around point D itself, but also on its way around end F
of some other line FF' (not shown in the figures) also en-
tangled with DD' and EE'. Therefore, point C has to go
many times around the ends of all the lines it is trying to
disentangle from.

Thus, in order to disentangle from just one of its
neighbors, the end of the flux line has to move along the
trajectory of length i, —dexp[(A/1) ]. Note that this
trajectory is unique and the a priori probability to
find this unique trajectory is exponentially small
P-exp( —i,/d). If the end of the flux line makes a
wrong turn and passes one of its neighbors on the wrong
side, it has to trace the trajectory back and correct this
mistake in order for it to disentangle from the neighbor.
Therefore, the disentanglement time rl of a single-flux
line is
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FIG. 3. Collective disentanglement mode.
FIG. 4. Schematic phase diagram.

r,g-exp[(A/d)'] . (Sb)

From any practical point of view for A/d ~ 2-4 both
collective and single-flux-line relaxation times [Eqs. (Sa)
and (Sb)l can be considered infinite Thus., as soon as
lines begin to entangle, the system becomes glassy. In
this glassy phase the ends of the flux lines freely move on
the scale of interline spacing d and pass by each other.
But at times smaller than r, the trajectory of each end is

localized in the region of size -dKs ~ A.
Next, we would like to determine the conditions under

which this glassy entangled system of vortex lines melts

by the virtue of flux-line crossing and interchanging.
The interaction potential per unit length for a pair of
vortex lines is V(r) (pp/8tr2X )Kp(r/1), where Ep is a
modified Bessel function [Ep(x) = —ln(x) for small x].
In order for two flux lines to cross, the distance between
them has to decrease from their average separation d to
the core diameter g. Thus, the crossing energy per unit

length is of the order E, =(pp/8n A)1 (d/ng) , We as-.
sumed that both the intervortex distance d and the
coherence length ( are much less than the London
penetration depth A, . In order to estimate this energy, we
can compare it with the vortex line tension c~ =(pp/
16m X )ln(X/g), which is related to the critical field H, ~

by Eq. (1). Therefore, the flux crossing energy for a typ-

in Fig. 3 outlined by the circle. In order to collectively
release it, flux lines AA' and 88' have to disentangle
from their own neighbors, while those have to disentan-

gle from their own prospective neighbors, etc. Thus, in

order to collectively release the chosen entanglement
(circled in Fig. 3), it is necessary to push to the surface
all entanglements inside a cone (dashed line in Fig. 3).
The volume of this cone is -s (,d and it contains -s
entanglements. As a result of this collective mode all
lines inside this cone are straightened (since all the en-
tanglements inside it are pushed to the surface) leading
to an increase of free energy (decrease of entropy) of kT
per each entanglement involved. Therefore, the relaxa-
tion time of this collective mode is r, -exp(s ). The
hardest entanglements to be released are located in the
middle of a flux line with s-(A/d); therefore, the long-
est relaxation time of these collective modes is

ical crossing distance / is

E„/ 2ci / ln(d/g)/In(k/g)

2c~/ln(H, 2/H)//In(H, 2//Hg ] ) . (6)

Note that we recover Eq. (3) for H =H, ~ (d = l).
The second equality in Eq. (6) was obtained using rela-
tions similar to Eq. (2) connecting distance scales with

corresponding magnetic fields d = (Pp/H)', X= (Pp/
H, ))'2, and g=(pp/H2)' . The magnetic field H at
which the entangled vortex glass begins to melt corre-
sponds to the flux crossing energy E„/ of the order of
ktt T,

2ttkc T H, )

exp ln
H2 H~pp/ H2

(7)

In the present paper we approximate the flux crossing
distance / by the shortest physical scale in the problem
(interlayer spacing or core diameter) l =10 A. Simple
estimates show that at low enough temperatures (T (3
K) flux lines are stiffer and the crossing distance l can be
larger than 10 A and grows with decreasing temperature.
In this low-temperature region there is even higher-
energy cost for flux line crossing, but we do not consider
this regime any further.

Expanding the exponential in Eq. (7) to the first order,
we get a rough estimate of the melting transition H

(H, 2
—H*)/H, p =0.1T/T, .

Thus, we obtain a phase diagram schematically drawn
in Fig. 4. The above estimates are based on a three-
dimensional continuum theory of anisotropic supercon-
ductivity, applicable if the distance d between flux lines
is sufficiently large. Near H, ~ this distance is small and
it may be more convenient to describe fluxes using
quasi-two-dimensional models such as the pancake mod-
el. This may lead to some changes in the coefficients in

the above equations.
If we start from an entangled glass state and decrease

temperature T, the flux lines get stiffer and reduce the
transverse fluctuation A, pushing entanglements out of
the system to the surface. At first the entanglements ad-
jacent to the surface are pushed out. This allows the
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deeper entanglements to move closer to the surface and

be pushed out plane after plane. At lower temperatures
we recover the Abrikosov lattice. Note that this sequen-
tial disentanglement process does not contain any ex-
ponentials, and is much faster than the relaxation pro-
cesses discussed above [Eqs. (Sa) and (Sb)l. Neverthe-

less, this sequential process could be slower than cooling
of the sample. It is remarkable that a few strong pinning
centers can cause irreversibility and hysteresis eff'ects by
blocking the whole system of entanglements inside the
sample.

For the sake of simplicity we have not discussed the
eff'ect of impurities. As was shown by Larkin and
Ovchinikov, the presence of impurities destroys the or-
der of the Abrikosov lattice and smears out the melting
transition. It was suggested by Fisher that collective

pinning of vortex lines by impurities leads to a glassy
state. All arguments presented in this Letter should ap-

ply to this state, which may correspond to a typical ex-
perimental situation. The main issue is whether flux-line

crossing or depinning is more essential for the resistance.
The experimental data on proton-irradiated crystals'
support the importance of topological interactions. It
was demonstrated' that the increasing concentration of
strong impurities does not affect the position of the ir-

reversibility line (since it is controlled by line crossing),
while increasing the critical current (at which the whole

system of entangled flux lines is pulled off impurities).
In summary, we have demonstrated that the lifetime

of an entanglement above the melting transition of the
Abrikosov lattice is practically infinite. Thus, at any ex-
perimental time scale the entangled flux lines form a
three-dimensional network (topological glass) with a
finite shear modulus. A few strong pinning centers can
prevent this system from sliding, leading to the absence
of resistance. This glass is different from the ones dis-
cussed in the literature since it is due to topological en-

tanglements rather than impurities.
Because of the line-crossing mechanism with charac-

teristic energy E„l [Eq. (6)] the conductivity appears
near H (T). Therefore, it is not a sharp transition line

and its position may depend on the frequency, as ob-
served in some experiments. " Below this transition re-
laxation time diverges very quickly as exp(E„l/kgT) and

becomes much longer than the time estimated ' on the
basis of the reptation model.

In thin films the entanglement eff'ect should disappear
and the melting transition would coincide with the super-
conductivity transition. This occurs when A,q defined in

Eq. (4) becomes smaller than intervortex spacing d,

L «3fp/2rckg TH . (9)
As mentioned above, at temperature T =77 K we can

take F3 =0.01@1=0.01H, imp/4x and obtain the condition
L(10 Pp/ksT=10 pm near H, i=100 G and L( 1000 A for fields of order 10 kG. It was observed ex-
perimentally' that the irreversibility line becomes thick-
ness dependent in films thinner than =1000 A in a
magnetic field 0=7 kG.

It is interesting to note that systems of nearly parallel
nonintersecting lines are often encountered in physics.
Examples of such systems are parallel dislocation lines in

deformed crystals, vortex lines in superfluids, and flux

lines in neutron stars. ' In all these cases, topological
constraints may significantly influence the behavior of
the systems. We believe that the most interesting and

easily studied is the topological glass transition in some

polymeric systems, such as grafted polymers and block
copolymers. We will discuss it in a future publication. 's
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