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In a number of cases, an approximate description of a
martensitic phase transition can be given in terms of a
relatively small number of coordinates called con-
figuration coordinates. For example, the
Nishiyama mechanism' shows how to continuously dis-
tort the face-centered-cubic (fcc) structure into the
hexagonal-close-packed (hcp) structure. This distortion
can be decomposed into two configuration coordinates,
one describing a shearing of the crystal, and the other
describing a sinusoidal relative displacement of planes of
atoms (see Fig. 1). The principal object of this Letter is
to show that the free energy of the crystal, when con-
sidered as a function of these configuration coordinates,
displays a remarkable degree of symmetry. It will be im-
portant to exploit this symmetry when constructing a
free-energy surface describing the phase transition.

Attempts have been made to construct a Landau
theory of martensitic phase transitions. Here, one con-
siders a given reference structure—say the fcc structure
in the above example—and expands the free energy in
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The Shoji-Nishiyama mechanism prescribes a way of continuously distorting an fcc into an hcp struc-
ture. We show that the atomic displacements of this deformation mechanism can be considered as the
sum of a modulation and a strain. A transition path between these two structures can therefore be
characterized by a parametrization of the modulation and strain amplitudes. The free energy as a func-
tion of these two amplitudes is shown to be highly constrained and, in particular, is invariant under a
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powers of the departures of the configuration coordinates
from their reference structure values. This procedure
has the fatal difficulty that, although the free energy for
configurations close to the fcc structure is well described
by such an approach, no expansion having a finite num-
ber of terms will give a free energy which even has the
correct symmetry at values of the configuration coordi-
nates corresponding to the hcp structure. An example of
such a Landau theory, which describes these difficulties,
has been given by Gooding and Krumhansl® for the
body-centered-cubic to 9R transition in lithium.

The difficulty just mentioned has been resolved in an
interesting way by Dmitriev et al.> who, for Landau
theories of several transitions, write the order parameter
as a transcendental function of the (here only one) con-
figuration coordinate. However, the justification for this
is not based, as it will be for us, on the symmetries of the
various structures which occur in the configuration
space. In a later paper,* they find that their method is
inapplicable, for example, to the fcc to hcp transition,

R=(1/6,1/6)

FIG. 1. This figure shows how the various structures in the
(n,A4) configuration space are derived from the simple hexago-
nal (sh) structure using the modulation and strain. The Bra-
vais lattice vector t; of the sh structure in (a) lies perpendicu-
lar to the hexagonal planes and is one-half the modulation
wavelength. The orientation of the polarization vector p of the
modulation, with respect to the hexagonal planes, is given in
Fig. 3. Solid circles correspond to atoms in the plane of the
figure, and open circles to +t; above or below. The straight
lines in each figure represent the effect of the strain, i.e., a vert-
ical line means the shear strain is zero. The modulation, repre-
sented by the curved line, shifts planes alternately to the left or
right of the positions they would occupy with the shear alone.
The planes have been labeled according to their relative posi-
tioning along the p direction. Planes B, B', and C are displaced
from A4 by amounts 3p, p, and % p, respectively. Structures
AB', AAB'B’', and AABBCC are labeled according to the stack-
ing of their hexagonal planes.

© 1990 The American Physical Society 127



VOLUME 65, NUMBER 1

PHYSICAL REVIEW LETTERS

2 JULY 1990

. B nnes

. Xhep -
,

A N , e
-1/2 \7’-AB'
FIG. 2. The unit cell of the (n,4) configuration space. The
free energy possesses at least inversion symmetry about struc-
tures represented by solid circles. Structures represented by

crosses are associated with constraints on the derivatives of the
free energy.

and devise a different method of tackling this problem.

In defining the configuration coordinates which trans-
form the fcc into the hep structure, it is convenient to use
the simple hexagonal (sh) structure as the reference
structure. That is, the sh structure lies at the origin of
the configuration space, while the fcc and hcep structures,
among others, correspond to nonzero values of the con-
figuration coordinates (see Fig. 2). The sh structure is
composed of planes of atoms, arranged hexagonally,
stacked directly on top of one another. The Bravais lat-
tice vectors t; and t,, which lie within the hexagonal
planes, are shown in Fig. 3. The lattice vector t;3 is per-
pendicular to the hexagonal planes and has length equal
to the interplanar spacing. We note here that the c¢/a ra-
tio does not enter the discussion below since it does not
affect the symmetries of the states [except for the fcc
structure, for which ¢/a =(8/3)'2].

The fcc structure can be generated from the sh struc-
ture by shearing its hexagonal planes along the X direc-
tion. The hcp structure, on the other hand, can be gen-
erated from the sh structure by a modulation which
shifts, with alternating sign, the hexagonal planes along
the X direction (see Fig. 1). The amplitudes of these two
configuration coordinates will be referred to as n and A,
respectively. The displacement of an atom from its posi-
tion at r=n,t;+n,t,+nst; in the sh structure, associat-
ed with these two coordinates, can then be written as

u(n,A,r) =2nn;p+Apcos(Q-r) . (1)

The first term on the right-hand side refers to the shear.
It moves each successive hexagonal plane by an addition-
al 2np, where p= % (t, +2t;) (see Fig. 3). The modula-
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FIG. 3. The solid circles represent a hexagonal layer of a
structure in the (n,4) configuration space. The vectors ti,ta,
and p,p’ are the Bravais lattice and polarization vectors which
lie parallel to these planes.

tion, with wave vector Q=(x/c)(0,0,1), moves the hex-
agonal planes by, alternatively, Ap or — Ap. Neither of
the two configuration coordinates changes the ordering
of atoms within a hexagonal plane, but only the relative
positioning of the planes along the p, or X, direction.

In addition to the fcc and hcp structures mentioned
above, the two configuration coordinates can generate
other special structures. By special we mean a structure
whose space-group symmetry is higher than that of those
with neighboring n and 4. Figure 1 lists these structures
and shows how each is generated from the sh structure
by giving a cross section in the plane defined by p and ts.
The remainder of this paper is primarily concerned with
finding the constraints on F(1,4), the free-energy densi-
ty as a function of n and A.

Consider the structures with configuration coordinates
(n,0). Because the sh structure is a Bravais lattice, and
because n is a homogeneous strain which does not des-
troy translational symmetry, these structures will also be
Bravais lattices. Their Bravais lattice vectors t; are
equal to the t; except that t3=t;+2np. Distort these
structures by adding a modulation, so that (7,4) are the
new configuration coordinates. If each atom is then
translated by t3, the resulting structure will be one hav-
ing an identical n, but a modulation amplitude A4 re-
versed in sign. Hence,

F(n,A)=F(n,—A). )

In addition to having mirror symmetry about 4 =0,
F(n,A) also has mirror symmetry about n=0. This is
because structures (n,4) and (—n,A4) are related to
each other by the glide-plane symmetry {o, |ts} of the
(0,4) structure (this is the symmetry operation which
reflects each atom about the plane perpendicular to X,
and then translates it by t3):

F(n,A)=F(—n,A4) . 3)

The constraints on the free energy given by Egs. (2)
and (3) can be formulated somewhat differently. Let
R =(n,4), and define [o4|0IR =(1, —A4) and [o,|0IR
=(—n,A). From Egs. (2) and (3), the free energy
F(R) is invariant under these two operations. The free
energy is also invariant under translations of R. From
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Fig. 2, R=(%,%) as well as R=(0,0) corresponds to
the sh structure. The point-group symmetry [o,|0] im-
plies that R=(— %, +) also corresponds to the sh struc-
ture. Let Ty=(3,%) and T,=(—1%,%). Then if
[E|T\JR=R+T, and [E|T,JR=R+T,, F(R) is in-
variant under the two-dimensional space-group pmm,
with generators [o,4]0], [0,|0], [E|T)], and [E|T.l.
Multiplication of these generators is defined in the usual
way. If [P|v] denotes an arbitrary element of pmm,

F(P|vIR)=FR). (4)

The symmetries of three structures, denoted in Fig. 2
by fcc, AABBCC, and hcp, impose additional constraints
not implied by the space-group constraints of Eq. (4).
They are associated with the fact that each possesses a
threefold axis perpendicular to the hexagonal planes.
The generator of this axis can be referred to as {C3|0}.
This symmetry forces the partial derivatives of F(R)
with respect to 1 and A, evaluated at these three struc-
tures, to be zero. The argument for the case of A is as
follows. (The case of 71 is analogous.) Consider the fol-
lowing two ways of distorting any of the three structures:
The first, a change 84 in the amplitude of its con-
figuration coordinate A, and, the second, the addition of
a modulation with amplitude 84, whose wave vector is
the same as that of A4, but whose polarization is perpen-
dicular. The displacement of an atom at r from its posi-
tion in fcc, AABBCC, or hcp, due to these two distor-
tions, is

5u(8A4,6A4',r) =6Apcos(Q-r)+8A4'p' cos(Q-r). (5)

The new polarization vector p'= — (~/3/2)t, is shown in
Fig. 3. The modulation amplitudes 4 and 54’ trans-
form into one another under {C;|0} like coefficients of
orthogonal basis vectors,

{Cy| 064 = —%GA —?51,
(6)
{C3|0}5A’=l/2——3—6A—%5A'.

These transformation properties can be shown to imply
that no linear combination of §4 and 84’ is invariant un-
der {C3]|0}. The derivatives of F(R) with respect to A,
evaluated at fcc, AABBCC, and hcp, must therefore van-
ish. Since the same holds true for derivatives with
respect to 7, it would appear that we have six new con-
straints on F(R). However, two of the six are already
implied by the invariance of F(R) under pmm. The four
new constraints are given below:

oFR) | _ aF(R) L
04 hep 04 ABBCC
_OFR) | _oFR) L 0
M e an ABBCC

It can be shown that the invariance of the free energy
under pmm requires F(R) to be of the form

F(n,A) =2 Ap ncos(2aemn)cos(2znA) , (8)

m,n=0, m-+neven.

The four constraints on the derivatives of F(R) can be
expressed as constraints on the A,, ,. The substitution of
the above free energy into Eq. (7) gives, respectively, the
four equations

Y nApy ,sin 2zn/3)

m.,n

=Y nA,, ,cos(zm/3)sin(zn/3) =0,

m.n

9
Y. mA,, ,sin 2zm/3)

=3 mAp ,sin(zm/3)cos(zn/3) =0.
m,n

Some combinations of the parameters A4,, , can be re-
lated to experiment by noting that, for the hcp phase, for
example, the second derivatives of the free energy with
respect to n (or A) gives the elastic constant C44 (or a
q =0 transverse-optical phonon frequency); similar re-
marks apply to the fcc phase.

Further progress depends on a knowledge of the pa-
rameters A, ,. Ultimately, one would hope to be able to
calculate these coefficients by an extension to nonzero
temperatures of first-principles frozen-phonon total-
energy-type calculations (such as those used to study the
pressure-induced bce to hep transition in barium?®). In
the absence of such information on the A4,, , we intro-
duce an arbitrary approximation, motivated primarily by
its simplicity, in order to give an illustrative example of
the application of the theory to the determination of the
fce to hep phase transition. We expect that the A4, , will
decrease in magnitude as the m and n become large
(since there is a limit to how rapidly the energy will vary
as n and A are varied). This leads us to consider models
for which A4,, , =0 for m+n= N. Henceforth, we re-
strict ourselves to the case N =6, which is the simplest
such model consistent with the symmetry constraints de-
rived above, and which has nine nonzero parameters.
Dropping Ago, and using the constraints on the deriva-
tives of F(n,A4) results in four independent parameters.

0.2T A
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FIG. 4. The region of the (A42,44) parameter space where
fcc and hcp are the global free-energy minima (for A4,,=0,
A=0). The free energy of the point shown is plotted in Fig. 5.
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FIG. 5. The unit-cell free-energy landscape of (A3,A44)
=(—0.65,—0.1). The n and A directions are as shown in Fig.
2. However, the origin has been located at the AB' structure to
show a transition between the fcc and hcp structures, the glo-
bal minima, more clearly. The line between fcc and hcp is the
transition path of the Shoji-Nishiyama relation.

We will use Ay, A= ;‘ (Azo_Aoz), A= ';‘ (A20+A02),
and As= 1 (440+ Ags). It can be shown that for A =0,
Amn=Anm. In this case, the free energy F(n,4) is
symmetric under interchange of n and A and the fcc and
hcp free energies are degenerate. For A#0, however,
F(5,0)=F(0,%). To this order in A, , the transition
temperature between the fcc and hep structures is deter-
mined by the temperature dependence of the asymmetry
parameter A, the transition, which is first order, occur-
ring when A=0. The free-energy landscape at the tran-
sition temperature is then determined by the values of
the three parameters A,, A4, and A,;. Since the form of
the free energy is unchanged by a proportionality con-
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stant, we can set A, =1. (A similar analysis holds for
Az =—1.) Restrictions on the values of 4, and A4 may
be obtained by noting that fcc and hcp must be the glo-
bal minima of F(7n,4) at a transition between these two
structures. The region of the (4,,44) parameter space
for which this is satisfied is shown in Fig. 4. The free-
energy landscape generated by one of the points in this
parameter space is represented by a contour diagram in
Fig. S.

This paper has been primarily concerned with the fcc
to hcp transition. However, the configuration-space ap-
proach itself is obviously much more general. We sug-
gest that, when combined with a microscopic approach,
as in Ref. 5, it may be a powerful tool with which to ana-
lyze martensitic phase transitions.
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