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Nonstationary Quasiperiodic Energy Distribution of an Electron Gas
upon Ultrafast Thermal Excitation
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We consider the evolution of an electronic system initially in equilibrium with a semiconductor crystal
lattice upon a sudden rise in the lattice temperature. On a short time scale (- I ps), electrons equili-

brate with the optical phonons and establish a peculiar quasiperiodic energy distribution. Time evolution
toward this distribution is discussed on the basis of an exact solution of the Boltzmann transport equa-
tion. While the quasiequilibrium regime persists (longer than —1 ns), the electronic system possesses a
number of unusual thermodynamic and transport properties. The specific heat is suppressed as if some
of the electron degrees of freedom were frozen out; the low-field mobility is substantially enhanced.

PACS numbers: 72.10.Bg, 63.20.Kr, 72.20.Dp, 72.20.Pa

Thermodynamic equilibrium between an electronic
system and a crystal lattice is established by phonon
scattering. At sufficiently high temperatures, the elec-
tron energy relaxation rate due to optical phonons (r ' )
is higher than that due to acoustic phonons (r" ) by
several orders of magnitude. Typically, in semiconduc-
tors rt'~) &10 '

s and r" &10 s. ' This disparity
of the inelastic relaxation times can lead to the forma-
tion of an electronic ensemble that is in equilibrium with
the optical-phonon system but has not yet appreciably
interacted with acoustic phonons. As will be shown
below, such an ensemble possesses rather unusual prop-
erties. Manifestation of these properties in electronic
transport can be conveniently referred to as the "classi-
cal mesoscopic effects" (drawing a parallel to and a dis-

tinction from the quantum mesoscopic effects that occur
when the coherence length or time of an electronic wave
function exceeds characteristic system dimensions2). In
the present Letter, we discuss effects arising from abrupt
changes in the lattice temperature. It will be shown that
the electron energy distribution acquires a peculiar struc-
ture that affects a number of macroscopic properties.

Consider a semiconductor initially in equilibrium at a
temperature To. Suppose the lattice temperature is sud-

denly raised to a value T ) To. Let us discuss the evolu-
tion of the electron distribution over a relatively short
time, when the only important source of inelastic scatter-
ing is due to optical phonons. For concreteness, we shall
be considering the case of GaAs and hence the interac-
tion with polar optic phonons. In this case the Boltz-
mann kinetic equation can be written in the form

ro - (1 e ) [e pf(E —1) —e~f(E)]ln[(E —1) ' + (E) '~ ]

where f(E) is the electron distribution function, E—=E/
hroo is a dimensionless electron energy in units of opti-
cal-phonon energy hroo, and P= hroo/2kT; th—e operator
e+seg(E) =g(E+ I ) effects displacements by unity. The
characteristic time ro is given by
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where e is the electron charge, m the effective mass, and
and ep are, respectively, the optical and the static

dielectric permittivities. Let us divide all electrons into
energy ladders

[E'"'(e)]=(e+ v)pro, 0» e~ 1, v=0, 1,2, . . . . (3)

Here e is the dimensionless electron energy modulo the
optical-phonon energy A. coo., for E ~ @coo both E and e
have the same meaning. The total number of electrons
on a given ladder will be denoted by N, „t(e);this number
is a functional on the distribution f(E)

It is easy to see that the kinetic equation (1) does not
couple populations belonging to different energy ladders
(3). Therefore, Eq. (1) can be split into a set of in-

dependent equations,

M f() (4)

where we have introduced a multidimensional vector
f (e) —= If(e),f(e+ I ), . . .]. Equation (4) can be effi-

ciently solved by numerically diagonalizing the matrix
M. It can be sho~n that one of the eigenvalues of M
equals zero (this is required for the existence of a sta-
tionary solution) and all the other eigenvalues are real
and negative. The initial condition for f corresponds to
an equilibrium distribution at To.

Figure 1(a) shows a sequence of electron energy distri-
butions [CL (E) '~ f(E), normalized to unity] at different
times, calculated for an electronic system initially at
TO=77 K interacting with the lattice at T=300 K. We
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(a)
see that, to a good measure, the electronic system attains
a quasistationary distribution already at t = 2rp. It has
a quasiperiodic structure with a period Amp,. the ratio of

h cog/k T
neighboring peaks is approximately e . Dynamics
of the diAerent peaks are illustrated in the inset of Fig.
1(a) and further in Fig. 1(b), where we compare the
effects at two different temperatures. The equilibration
processes are seen to be roughly exponential. The higher
the energy, the longer the quasiequilibration time:
Clearly, the equilibration of peaks with higher indices n

requires a larger number of phonon absorption processes
that move electrons up in the energy ladder. Since the
high-energy peaks n 1,2, . . . grow at the expense of the
main peak with n 0, the latter equilibrates slower than
the n=l peak. The temperature dependence is due to—h cop/k T
the variation in the phonon number, tL e

The shape of the quasistationary distribution can be
calculated analytically. It is clear that optical-phonon
scattering cannot change the nutnber N.,t of electrons on
a given energy ladder,

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Electron Energy in Units of the Optical Phonon Energy

1.00

On the other hand, within a ladder, the distribution of
populations on different rungs in quasiequilibrium at a
temperature T is given by the Gibbs statistics. There-
fore, Eq. (5) determines the quasi-Fermi-level EF(T,c)
with a ladder E ' (c) at quasiequilibrium:

C)
C
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C
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EF(T,c)
exp

EP'(Tp) Z(Tp, c)
kTp Z(T, c)

+ ) I/2
—(v+c)hruc/kT

y~p

where Z(T, c) is the partition function

(7)
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The quasiequilibrium distribution function is thus given

by

Time t/. ,
FIG. 1. Time evolution of the electron energy distribution,

as electrons, initially at To 77 K are heated by phonons that
are in equilibrium at T=300 K. (a) Dotted curves show the
normalized (to unity) distribution JEf(t,E) at times t =0 4', .
1.2', and 2.0ro. The initial distribution, corresponding to
equilibrium at To 77 K, is shown by the dashed line. Solid
curves describe the quasiequilibrium "mesoscopic" distribution
JEf(TO T,E), calculated from Eq. (8). The stipple curve
corresponds to the equilibrium distribution f(T,E) that will be
established after a much longer time t —r" . Inset: Time
dependence of the peak values p, (t) at n=0, 1,2, 3 relative to
their values p, in quasiequilibrium. (b) Relative peak values,

lip, (t) —p, (0)l/[p —p, (0)ll, plotted on a logarithmic scale.
Dashed lines correspond to the phonon temperature T=150 K.

Note that the ratio Z(Tp, e)/Z(T, e) in Eq. (8) is a
periodic function of E, since e is defined as a remainder
in the division of E by hntp. The functions JEf(Tp

T,E) calculated from (8) are plotted in Fig. 1(a) by
solid lines. It can be seen that they are practically indis-
tinguishable from the nonstationary electron energy dis-
tributions, calculated with the time-dependent Boltz-
mann equation for t ~ 2tp.

We see from Fig. 1(a) that the quasiequilibrium func-
tions f(Tp T,E) are dramatically different from the
equilibrium distribution f(T,E). The latter is estab-
lished by the acoustic-~honon scattering after a consider-
ably longer time t —r "» ip, that can be regarded as a
time of the degradation of the mesoscopic order, embo-
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(E) E f(Tp T,E)dE,N~

where

N=„E—' f(To T,E)dE

E' fi-p(E, To)dE. (10)

In equilibrium, of course, one has (E) =3kT/2. Figure
2 shows the ratio 2(E)/3kT as a function of the lattice
temperature for several initial electron distributions,
characterized by different values of To. We see that the
lower the To the more suppressed is the mean kinetic en-

ergy in the mesoscopic regime. This effect can be viewed
in analogy to the suppression of degrees of freedom at
low temperatures in a quantum system with an energy
gap. Since the environment allows electrons to change
energy only by discrete portions @coo, at low T«ANp
most electrons remain at the lowest rung v=0 of the en-

ergy ladder E ' (e). The dashed lines in Fig. 2 show the
temperature dependence of the electronic specific heat C
in the mesoscopic regime. Suppression of the specific
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FIG. 2. Thermodynamic properties of the electron system in

the mesoscopic regime. Solid lines show the mean kinetic ener-

gy of electrons distributed according to f(TD T,E) as a
function of the phonon temperature T for three diAerent initial
electron temperatures To. Dotted lines correspond to the crude
model of Eq. (11). Dashed lines represent the specific heat per
electron relative to the equilibrium value 3k/2.

died in Eq. (5). The rate at which the distribution

f(To T,E) degrades depends on the temperature and
is different in different energy ranges. For T=300 K,
the degradation time r " (e)) 10 s, at all energies.

So long as the mesoscopic order persists it affects
many properties of the electronic system. Consider, for
example, the average energy of the electron gas

2e 1 E3/2 (E) af(E, T) dE
3m N 4o 'r1E

(12)

where r~(E) is the momentum relaxation time. In the
time range 2' + t ",the mesoscopic mobility p is given

by Eq. (12) with f replaced by f(To T,E).
Figure 3 shows the depende cnesP (T) for three initial

temperatures To of the electron gas. The curves are
plotted in the range T) To. In the assumed expression
for rp(E) we included three scattering mechanisms: by
acoustic phonons, by polar optic phonons, and by ionized
impurities of concentration ND =10' cm . The solid
curve in Fig. 3 corresponds to the equilibrium mobility
calculated from Eq. (12) for the same scattering mecha-
nism. The shape of this curve indicates that at such a
low ND the phonon scattering dominates, except at
lowest temperatures; in the nonstationary mobility, the
effect of impurity scattering is more pronounced. In gen-
eral, we see thatp (T) )p(T). This has a simple ex-
planation in light of the data in Fig. 2: A lower kinetic
energy implies less phonon scattering. Relative suppres-
sion of the mean kinetic energy is larger at lower T and
the mobility enhancement is therefore stronger in that
range. At still lower temperature, the impurity scatter-
ing becomes more important and the suppression of ki-
netic energy leads to lower mobility.

It should be clear that, in addition to the mobility, a
number of other macroscopic properties will be affected
by the mesoscopic order in the electron distribution. In
particular, one can expect a quasiperiodic structure in

thermionic emission or tunneling across heterostructure

heat at low T and its behavior at higher temperatures is
quite analogous to the deviation of the lattice specific
heat from the classical Dulong-Petit behavior in the Ein-
stein model of a solid. The slight difference, manifested
in the overshoot by C of the classical value of 3k/2 per
electron and the existence of a maximum, originates
from the concrete shape of the electron density of states.

Qualitatively, the behavior of (E) can be reproduced
in a simple model in which the initial electron distribu-
tion is assumed by the form 8(E—kTo) and the density
of states is assumed independent of the energy. The
former assumption is reasonable, since kTo«Aroo, ' the
latter is crude, since the (E)'i factor is non-negligible.
This analytical model should be more accurate for a
two-dimensional electron gas. The result

(E)g TJ Acoo+ To(e —1)
(E)jf.T} f + T( ho)(JkT 1)

is plotted in Fig. 2 by dotted lines.
Perhaps the simplest way of experimentally observing

the mesoscopic order in the electron distribution would
be to measure the electron mobility as a function of time
upon a rapid increase in the lattice temperature. In a
weak electric field, the mobility p is given by the follow-

ing expression:
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is longer than the time t-2~0= 1 ps required to estab-
lish the mesoscopic distribution f(T,E) T. his implies
that the distribution will be faithfully following the vari-
ation of the optical-phonon number, oftering a way for
experimentally studying kinetics of the optical-phonon
generation by acoustic phonons.

Finally, it should be noted that, although we have only
considered here a spatially uniform electronic system, in

the absence of currents, similar effects can be expected
in situations when electrons Ilow across regions of high-
temperature gradient. These situations can be analyzed

by generalizing the mesoscopic "conservation law" (5) to
a continuity equation, appropriate for a nonuniform sys-
tem with a current flow. The typical length scale of
classical mesoscopic effects is of the order of tens of mic-
rons which exceeds the size of most modern semiconduc-
tor devices.

FIG. 3. Temperature dependence of the mobility of an elec-
tron gas, distributed according to f(TD T,E), for three
diA'erent initial electron temperatures Tp. The solid line shows

the equilibrium mobility, calculated with the same scattering
mechanisms (acoustic and optic phonons plus ionized impuri-
ties of concentration 10'6 cm ').

barriers, in the free-electron light absorption, etc. A
sudden increase of the lattice temperature in the vicinity
of an electronic system can be achieved by supplying
heat from a bath. In the heat bath itself, the tempera-
ture can be varied rapidly by a variety of means. Inas-
much as the heat is transferred mainly by acoustic pho-
nons, an important factor is the time of thermal equili-
bration between the acoustic- and the optic-phonon
fields. In GaAs, this time is approximately 7 ps, which
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