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Universal Model for Modulated Phases in the Dielectric A 28X4 Family

Z. Y. Chen and M. B. %alker
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S iA7

(Received 9 April 1990}

A new symmetry-based phenomenological model for the modulated structures in the dielectric A2BX4
family is constructed. The model contains a novel competing-interaction mechanism which gives a rich
phase diagram. Furthermore, the model gives a universal prediction for both the space groups and the
modulation wave vectors for the sequences of phase transitions observed experimentally in the entire
A 2BX4 family.

PACS numbers: 64.60.—i, 64.70.—p, 77.80.Bh

There are two types of theories for modulated struc-
tures. A conventional Landau theory' accounts for ob-
served symmetries but lacks a single mechanism to pro-
duce multiple high-order commensurate (COM) states
and "devil' s-staircase" phase diagrams (i.e. , a different
"lock-in" term is required to stabilize each different
CQM phase ). A competing-interaction model, such as
the axial next-nearest-neighbor Ising (ANNNI) model3

or the Janssen-Tjon model, 4 can produce a rich phase
diagram for high-order COM states. For example,
Janssen has shown that the Janssen-Tjon model can ac-
count for many of the observed modulated phases of the

A2BX4 family; in this model, the stable COM phase of a
given wave vector has a unique space-group symmetry,
however, whereas more than one space-group symmetry

per wave vector has been found to occur experimentally.
The current work introduces a new symmetry based, -

competing-interaction model which has features of both
the above and which accounts for both the space-group
symmetries and wave vectors of the wide variety of ob-
served modulated phases of the dielectric A2BX4 fami-

ly
l, 6

The A2BX4 family contains a large group of dielectric
isostructural crystals having normal phase-space group
Pcmn The symb. ol A represents an alkali-metal ion

or equivalent monovalent complex such as NH4+ or
(TMA)+, i.e., N(CH3)4+. The symbol BX4 represents

a divalent tetrahedral complex such as Se04
ZnC14, or ZnBr4 . At low temperatures, different
but related structure-modulated phases are found as re-

cently reviewed by Cummins. Relevant information for
this Letter is summarized in Table I. A typical Lan-
dau model for these crystals is that of Iizumi et al. ' or
Ishibashi, " which adequately explains the symmetries of
simple low-order COM phases such as those in KzSe04.
However, it does not easily account for the high-order
COM structures of, say, Rb2ZnBr4, or TMA-MC14.
This is because a lock-in to a CQM phase of seventeenth
order requires a Landau expansion up to at least the
seventeenth order.

The model developed in this Letter has the advantages
of both being based on a symmetry analysis (as are con-
ventional Landau theories) and giving rise to the rich

phase diagrams characteristic of the competing-inter-
action models mentioned above. Our basic assump-
tions are that the structures of A2BX4 crystals are lay-
ered, and that the different layers interact with each oth-
er through a nearest neighbor i-nterlayer interaction.
The frustrated interaction in our model stems from a
nearest-neighbor mixing interaction rather than from a
higher-neighbor interaction as in other models.

The convention for the unit cell of the basic structure
used in this Letter is shown schematically in Fig. 1. The
structure can be viewed as being made up of layers per-

TABLE I. Modulated phases observed in the A28X4 family (Refs. 6-9). The commensurate phases are labeled by n/m, where

(n/m)2n/c' is the wave vector in the extended zone, and by the space groups determined experimentally. In this table INC stands

for "incommensurate phase. "

Crystals

K2Se04, K2ZnC14, RbpZnC14, . . .
R12ZnBr4
Cs2CdBr4, Cs2HgBr4

(TMA)MC14 (M=Mn, Fe, Zn, Co)
(XH, ) Zncl.
(NH4)2BeF4

Wave number n/m (space group)

Normal INC —,
' (Pc2~n)

Normal INC —,', —,
' (Pc2~n) —,

' (Pc 1 1)
Normal INC j' (P 112'/n)

(P 12 '/c 1)

Normal INC —,
' (Pc2~n) (INC) —,

' (P112~/n) j (P2~/cl 1) 4 (P2~2~2~)
Normal 4 (P 2en) —, (P 1c 1 or P 12~/c 1 ) —,

'
(Pc 2n)

Normal INC —,
' (P2~cn)
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pendicular to the c axis; the two layers in the unit cell of
Fig. 1 are located at levels z= 4 c and z= 4 c. All four
BX4 tetrahedra are symmetry related and the A ions
with the same greek subscripts are symmetry related
also. The symmetry of this structure is described by the
orthorhombic space group Pcmn. The modulation wave
vector is k =(0,0,ac*), with c*=2m/c.

For a single layer, say, the layer located at z =c/4, the
two-dimensional space group is generated by [E F10],
[&I01], [a,102], [~,12 2], and [&2xl 2 0]. Symmetry
modes are those displacements that transform like basis
vectors of a particular irreducible representation
(IRREP) of the space group. Here, for simplicity, we

discuss only the symmetry modes of the A, ions for a sin-

gle layer and their relationship with the three-
dimensional symmetry modes called A2 and A3 modes
which were shown by Iizumi et al. ' to be the modes pro-
ducing the modulation of the basic structure in K2Se04.
Of the six symmetry modes of the A, ions for the single
layer, we are interested only in the two relevant modes
corresponding to IRREP's labeled here as I 2 and I 3 be-
cause only these are directly related to the three-
dimensional symmetry modes corresponding to the
IRREP's A2 and A3 observed experimentally. ' These
layer modes for the lth layer are

ei(I 2) =(1,—1), ei(I 3) (1,1),
where the first and second entries describe the displace-
ments in the y direction for the A,2 and A,4 ions, re-
spectively, for the even l layers, and for the A, l and A, 3
ions for the odd l layers. One can show that the three-
dimensional symmetry modes A2 and A3 of Ref. 10 can
be made up of Bloch-type superpositions of our layer
modes I 2 and I 3. Finally, it should be emphasized that
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z=c/4

0
A 4

0
A 4

) ~A i 0
A 1

z= 3c/4

0
A 3 A 3

in the I 2 and I 3 symmetry modes for a layer, all ions in

the layer move; it is, however, sufficient for the purpose
of characterizing the symmetry of the motion to consider
only the A, ions.

The displacements of the A, ions in layer l are repre-
sented by

M I
= v I eI (I 3) +w( ei (r 3), (2)

where ei(I 2) and ei(I 3) are the symmetry modes defined
in Eq. (1). We take the free energy to be

FIG. l. The structure of A2BX4 at its normal phase project-
ed along the c axis. The structure is shown here with two levels
at (a) z —,

' c and (b) z —,
' c.

F=g [ 2 avi + 4 VI + 2 a wi + 4 wi +bvi wl ]+ 2 g (Jviv14. i+J'wlwi+1)+g 2 (vlwi+ i VI+ [wf) .
I l l

(3)

This expression is invariant under the transformations of
the space group Pcmn; also the coefficients of the vi and
wI terms and of the mixing-interaction term are ab-
sorbed into the definitions of the real variables vi, wl, and
the free energy. There are five undetermined coefficients
a, a', b, J, and J' in the free energy (3). The self-
interaction term coupling vi and vl+] favors a ferro-
magnetic-type profile (++++) for vi when J (0 or an
antiferromagnetic-type profile (+ —+ —) for vi when
J)0, where + and —refer to the signs of the variable
vl's. The same situation applies to the wlwI+] coupling
term. The mixing-interaction term coupling vl with wI+]
and v&+] with wI, ho~ever, favors a four-layer period for
vi of the form (+ + ——) while wi has the form
(+ ——+). There is thus a competition between the
self- and the mixing-interaction terms.

The Janssen-Tjon model" is based on a single-order
parameter per layer (corresponding to our vi) and the

co+. (k) = —,
' [a++J+ coskc'

+' [(a —+J—coskc') + sin kc'] ' (4)

t frustration mechanism there (a second-neighbor interac-
tion) is thus different from ours. Experimental studies'
of the soft mode in K2Se04 indicate that the I 2 and I 3

contributions are comparable in magnitude, and this
gives an experimental basis for including two-order pa-
rameters per layer (vi and wi) as we do.

Although the model of Eq. (3) appears one dimension-
al, it is effectively three dimensional since vi and wi

characterize an entire two-dimensional layer. Thus our
mean-field treatment is a reasonable approximation.

Introducing Fourier transforms of the variables vi and

wj and diagonalizing the effective dynamical matrix, we

find that the two branches of the dispersion curve for the
high-temperature normal phase are given by
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where we have defined a~ = —,
' (a ~a') and J~ = —,

' (J
+ J'). The branch ro-(k) is always lower than nil(k).
The mixing-interaction term in (3) for v/ and tv/il is

crucial for producing a minimum in the dispersion curves
at an arbitrary incommensurate (INC) k whose value
is a function of the system-dependent parameters, and is

thus a function of, e.g. , temperature and pressure. When
the temperature is lowered from the normal phase, the
ininimum of the dispersion curve co (k) goes to zero at
the normal-INC transition temperature, and the system
undergoes a phase transition to a modulated structure
with a wave vector k

To obtain the phase diagram for the free energy (3), a
numerical analysis has been conducted. The procedure
is similar to that of other competing-interaction mod-

els. The minimization conditions r)F/riv/=8F/Bw/ =0
were solved numerically. In addition, the boundary con-
ditions v/+ v/ and w/+ =w/ are imposed. This yields

COM phases characterized by COM wave vectors '

k =(n/m)c'*, where the ratio n/m is irreducible with n

and m integers, and c'* =2/r/c' with c'=c/2 the inter-
layer distance. We have arbitrarily chosen parameters
J—=b =0 and a —=0.4 to produce the phase diagrams
shown in Fig. 2. To obtain Fig. 2(a), values of m from I

to 10 were considered; Fig. 2(b) is an exploded phase di-
agram for the region between the 3 and 8 phases with

values of m up to 20 considered. The shaded areas indi-
cate higher-order COM or INC regions. We can deter-
mine the space-group symmetry from the profile of the
variables v/ and w/ using Eqs. (I) and (2). For each
phase, we have studied the behavior of the profile of the
parameters v/ and w/. At low a+, the profile of the order
parameter implies a structure that has low-temperature
symmetry listed in Table II. The space groups listed
here are consistent with those allowed for the symmetry
considerations of Janssen. For wave vector [odd/(2
xeven)]c'*, this symmetry remains valid all the way to
the normal-COM transition line. For other wave vec-
tors, there is a phase transition to a phase having the
same wave vector but a different symmetry when a+ in-
creases. This phase transition, represented by dashed
curves in Fig. 2, corresponds to a transition from a phase
with both ra+ and ro modes to a phase with an ro -only
mode. The ra -only model is the one that yields the
structures which have the most-often observed symmetry
in the A28X4 family. For this mode, there is a special

symmetry for the profile of v/ and w/. For example,
when n/m n/odd, v/ is an odd function of l —

—,
'

while

wI is an even one. Also, we note that if one replaces a-
with —a —,the phase diagram in Fig. 2 is not changed
but the profiles for v/ and w/ are interchanged, and thus
the space group is different for a —(0.

The phase diagram in Fig. 2 and the corresponding
space-group symmetries in Table II agree with the ex-
perimental results in Table I. The first group of com-
pounds, represented by K2Se04, initially goes through a
normal-INC phase transition, and then undergoes an
INC-COM phase transition. The resultant COM phase

has the space group Pc2in corresponding to the
a )0 case in our model, as in Table II. The crystal
Rb2znBr4 also belongs to this group but an interesting

phase is observed between the INC phase and the
COM —,

' phase. The crystal Rb2ZnBr4 also displays a

0.6
0.6 0.7 0.8 0.9

J
FIG. 2. The phase diagrams produced from our model using

b =0, a — 0.4, and J- =0. The space-group symmetries are
listed in Table II. The commensurate phases are labeled by

n/m, where (n/m)2/r/c' is the wave vector. The shaded areas
indicate higher-order COM or INC regions. (a) A global

phase diagram with m up to 10. (b) An exploded phase dia-

gram near the —,
'

phase with m up to 20.

n/m
High a+

(a- )o) (a (o) Low Q+

odd/(2 x odd)
n/odd

odd/(2 x even) (low b)
odd/(2xeven) (high b)

P 112'/n
Pc2l n

P12i/c 1

P2lcn

P2l2l2l
P2i/c I 1

P 12'/c I

P2l cn

P112l
Pc 11
P12 /c 11
P2lcn

TABLE II. Space groups determined from our model for
phases in Fig. 2.

1225



VOLUME 65, NUMBER 10 PHYSICAL REVIEW LETTERS 3 SEPTEMBER 1990

phase transition from the —,
' (Pc2~n) phase to a

(Pc 1 1) phase corresponding to the low-a+ case. The
second group is Cs2CdBr4 and Cs2HgBr4. This group
undergoes phase transitions from the normal phase to an
INC phase, then to a COM phase. This COM phase
corresponds to the zone center mode of the IRREP Aq,

which has n/m =I/2 here. ' The experimentally ob-
served space group is P112~/n which is consistent with

our model as indicated in Table II. The third group con-
sists of a large group of crystals commonly denoted
(TMA)MX4 (where M=Mn, Fe, Zn, Co, X=CI, Br).
Under zero pressure, the Fe, Zn, and Co salts first go
through a normal-INC phase transition, then a INC-
COM phase transition to a —,

' COM phase with space
group Pc2~n. As the temperature is further lowered,
they undergo phase transitions to a 6 COM phase with

space group P112~/n, through a possible intermediate
INC phase. These transitions can be well explained by
our model as in Table II, corresponding to a —&0.
When the temperature is further lowered, these crystals
undergo COM-COM phase transitions to a -', COM
phase with space group P2~/c. From this phase they
experience a reentrant phase transition to the 6 COM
phase but with a space group P2|2i2|. These two COM-
COM phase transitions can also be qualitatively ex-
plained by our model. We assume that when the transi-
tion from the first 6 phase to the l phase takes place,
the parameter a —changes sign. According to Table II,
the —', phase thus has the space group P2~/cl l. When
the reentrant transition occurs, the —,

'
phase should have

the space group P212i2~ for a —&0. The Mn salt is

somewhat diA'erent from the others. Instead of the

phase, a —,
' (P12|/cl) COM phase is stable between the

INC and the 6 phase. The sequence of phase transi-
tions of Mn salt can also be explained by our model.

So far we have let b=0. When b increases, we also
found that, for wave vector [odd/(2xeven)]c'*, a phase
transition occurs from the phase having P12~/c 1 symme-
try to a phase having the same wave vector but the sym-
metry P 2

~
cn. This prediction is consistent with experi-

mental observations of the last group in the A28L4 fami-
ly. The crystal (NH4)2ZnC14 undergoes a normal-COM
phase transition to a 8 COM phase with a space group

P2~cn (high-b case); when b decreases, it undergoes a
COM-COM phase transition to a phase characterized by
the same wave vector —,

' but with a different space group
P 12~/c 1 (low-b case); furthermore, it undergoes a
COM-COM phase transition to the 3 COM phase with

the space group Pc2~n as shown in Fig. 2 and Table II.
The crystals (NH4)pBeF4 and (ND4)2BeF4 first undergo
a normal-INC phase transition and then a first-order
INC-COM phase transition to a —,

'
phase of the high-b

symmetry P2&cn. This is also consistent with our model.
In conclusion, we note that the novel competing-

interaction model which arose in this Letter from a study
of the A28X4 family of compounds has provided a basis
for understanding the remarkably diverse series of phase
transitions and space-group symmetries which occur in

these materials.
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