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The Hubbard model possesses an SU(2) pseudospin symmetry, which contains the U(1) phase sym-
metry as a subgroup. The existence of such symmetry leads to interesting experimental consequences if
the U(1) phase symmetry is spontaneously broken, i.e. , if the ground state is superconducting. In this
case, there must exist a pair of massive collective modes which together with the usual Goldstone mode
form a triplet representation of the pseudospin group. These collective modes are collisionless and couple
directly to external charge disturbances with the wave number n and can therefore be detected experi-
mentally as sharp resonances.

PACS numbers: 74.65.+n, 74.20.—z

Ordinarily, when a theoretical model is proposed to
explain a given experimental phenomenon, its validity
can be easily accepted or rejected by comparing the
theoretical consequences of the model with experimental
data. However, three years have passed since the
discovery of high-T, superconductivity, and no verdict
has yet been reached on the question of whether the
one-band Hubbard model gives a proper description of
the phenomenon. The problem certainly lies in the
difficulty of extracting unique and reliable consequences
of a model which strongly correlates many degrees of
freedom. In this Letter, we exploit the consequences of a
special symmetry property of the Hubbard model. These
consequences are unique to the Hubbard model,
mathematically rigorous, and predict new resonances
which could be detected experimentally.

Condensed-matter systems usually involve interactions
of many degrees of freedom and various modes are
strongly coupled to each other. A single mode typically
decays with microscopic lifetime and cannot be easily
identified in a macroscopic measurement. However,
there exist well-defined collective modes in many-body
systems whose decay is prevented by selection rules asso-
ciated with symmetry principles. For example, charge
conservation gives rise to the collective sound-wave
modes in quantum Bose liquids, rotational invariance
leads to spin waves in both ferromagnets and antifer-
romagnets, and the translational invariance is responsible
for the collective cyclotron mode of electrons in a mag-
netic field. Since these modes have long lifetimes, they
can be detected experimentally as sharp resonances and
the systematic investigations of their properties yield a
great deal of valuable information.

The one-band Hubbard model indeed possesses a very
special symmetry, an SU(2) global symmetry which we

call the pseudospin symmetry. It contains the usual
U(1) phase symmetry as a subgroup. Interesting conse-
quences follow if the U(1) phase symmetry is spontane-
ously broken, i.e., if one is in the superconducting phase.
In this case, according to Goldstone's theorem, there

must exist a massless collective mode which is well
defined (collisionless) in the long-wavelength limit. In
the Hubbard model, however, since the U(1) phase sym-
metry is a subgroup of a larger SU(2) symmetry group,
we prove that there must exist two other massive modes,
which can be viewed as the symmetry partner of the
Goldstone mode. The lifetime of these modes becomes
infinite as the crystal momentum approaches tr [in the
following n denotes the corner of the Brillouin zone, in
two dimensions, it is the point (tr/a, tr/a)] and the energy
disperses quadratically away from this point. They cou-
ple directly to the longitudinal density fluctuation with
wave number n and can therefore be detected experi-
mentally as sharp resonances, say, in the electron-
energy-loss spectrum. Since the pseudospin symmetry is
unique to the Hubbard model, the observation of these
resonances in copper oxides could uniquely test the valid-

ity of the model. The position of the resonance deter-
mines the parameters in the Hubbard Hamiltonian, the
quadratic curvature in the dispersion relation yields in-
formation about the form factor of the Cooper pair, the
total intensity of the peak is proportional to the square of
the superconducting order parameter, and the width of
the peak is a measure of the departure of the Hubbard
model from reality.

The one-band Hubbard model is defined by the Ham-
iltonian

H= —I g c, c, +H.c +Urn tn ~

—pgn,
(r, r'), o r ro'

We denote by N=g„n„ the total number of electrons
and M the total number of lattice sites. p is the chemi-
cal potential that fixes the density of the system. The
lattice constant is taken to be unity. The following dis-
cussions are independent of the space dimensions, the
filling fraction, and the sign of U.

In this model, the operators

J—=g ( 1)'c tc 1, J+ =J—, Jp = —(N M) (2)

obey the commutation relations [Jp,J ~ I =J ~, [J+,
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J ] =2Jp and therefore form an SU(2) algebra. In the
following, we shall call it the pseudospin algebra. They
are eigenoperators of the Hamiltonian in the sense that

[H,J~] = ~ (U —2p)J+. , [H, Jp] =0.

D+ (tp) =fdt e' ' ' D y (t —1 ) is the Fourier transform
of (6). Similarly, we have

Dp(t, t') = 0(t t')&[Jp(t), h+(t')]&,

Thus both Jp and J = —,
' (J+J-+J-J+)+Jp colil-

mute with the Hamiltonian and are conserved quanti-
ties. In recent work, the representation of this symme-
try on the Hilbert space is constructed explicitly. In or-
der to extract direct experimental consequences, we now
consider irreducible representations of this symmetry in

terms of the operators rather than the states of the mod-

el.
Theorem 1.—The operators

and

Dp(cp) =
m+i6' '

D (t, t') =-—' 8(t —t')([J-(t),hp(t')]&,

D (tp) =
tp —(U —2p)+i 8

(9)

z, c,tc, ~, h+ = —h, —,

hp-! g( —1)'n„.

form an irreducible tensor of rank I 1 under the SU(2)
algebra defined by (2).

Proof: It can be easily checked that

[Jp,h ] =mh„, ,

(5)[J,h. ] =il(I +I) m(m+ 1)h.—

where I= 1 and m = —1, 0, and +1, respectively.
Physically, h, + are the on-site s-wave pairing opera-

tors while hp is the charge-density-wave operator. Equa-
tion (5) states the fact that they can be "rotated" into
each other by the pseudospin generators. This crucial
fact allows one to relate correlation functions of these
different operators in a way that measurable conse-
quences become manifest. Similar irreducible tensors
can be easily constructed which include the extended s-
wave or the d-wave pairing operators as part of the mul-

tiplet. All the following results apply to these multiplets
also. Ho~ever, for the sake of concreteness, we do not
discuss them separately.

Information about collective modes are contained in

the analytic properties of correlation functions. We con-
sider the following response function:

We summarize the above results by the following
theorem:

Theorem 2.—If p~o in the ground state of the Hub-
bard model, then there is necessarily a triplet of collec-
tive modes, defined by the pole singularities in (7), (8),
and (9) with energies —(U —2p), 0, and U —2p, respec-
tively.

Theorem 2 states a consequence of the spontaneous
U(l) symmetry breaking, i.e., of superconductivity. It
does not explain, nor does it depend on, the possible ori-

gin of this symmetry breaking. We note that (8) is noth-

ing but the standard argument leading to the existence of
the massless Goldstone boson. Therefore, Theorem 2

can be viewed as a generalization of the Goldstone
theorem to the case where the U(1) phase symmetry is a
subgroup of a larger, in this case an SU(2), symmetry
group. Note that p =U/2 fixes the density at half filling.
In this case, the modes in (7) and (9) are massless. This
is a manifestation of the fact that charge-density-wave
order can coexist with superconductivity at half filling.
Away from half filling, the two new collective modes are
massive.

Like the Goldstone mode, the collective modes found
in (7) and (9) are in fact smooth limits of dispersion
branches in the momentum space. To see this, let us
define

J (q)-gct, +etc i, (, J+(q)-J (q)',
k

(lo)
D+(t, t') = — '

8(t —t')([J+(t),hp(t')]) . (6) hp(q) =
2 Zct+qoct,

ka

Since J+ is an eigenoperator of the Hamiltonian, from
(3), its time dependence in the Heisenberg representa-
tion can be determined explicitly, in particular, J~(t)
=e' " ' ' J+(t'). The equal-time commutator of
J+ and hp is given by Eq. (5); therefore, (6) can be cal-
culated exactly. We thus obtain

D+(cp) =
to+(U —2p)+ib '

where p =(h+)/M, b is a positive infinitesimal, and

and form the correlation function

D (q, t) = — e(t)([J (q, t),h, ( —q, O)]). (11)

For q=tt, (11) reduces to (6). Since the correlation
function contains a single pole for q =x, we expect that it
is also dominated by the pole contributions in the vicinity
of x. This is the well-known single-mode approximation,
first introduced by Feynman in the context of quantum
Bose liquid. In this approximation, one makes the an-
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satz that

D+(q, to) = ( )
to —to(q)+i8

The unknown functions f(q) and to(q) can be deter-
mined explicitly by the moment sum rules

(12)

f(q) = ([J+(q),ap( —q)]),1

(13)
f(q)to(q) = — ([[H,J+(q)],ap( —q)]),1

from which one finds that f(q) =J2p and

to(q) = —(U —2p)

+ (bq)' g(tl'ei, )(ci,'1c" t, i) (14)
2 2p

for bq =q —n« 1, where ek = —2t(cosk„+ ). As
we see, the energy of this collective mode disperses qua-
dratically away from q =tr with a curvature determined
by the form factor of the Cooper pair (ct, let, 1). For large
enough bq, this mode eventually merges into the single-
particle continuum.

While Theorem 2 is an exact mathematical result,
some intuition may be gained by understanding the phys-
ical origin of these modes through Feynman diagrams.
Imagine that an external charge disturbance is applied to
the system at time t', so that a particle-hole pair is creat-
ed by the operator t5p. Equation (9) gives the probability
amplitude that a particle-particle pair, with the quantum
numbers specified by J, is observed at later time t (see
Fig. 1). Such a process occurs only in the superconduct-
ing phase where a hole can be scattered by the supercon-
ducting condensate and emerge as a particle. The pseu-
dospin symmetry of the Hubbard model [Eq. (3)]
guarantees that such a particle-particle pair can propa-
gate coherently with frequency U —2p throughout the
system without any scattering. This coherent propaga-
tion shows up in the amplitude (9) as a single pole.

In realistic systems, there are always interactions
present which spoil the exact symmetry of the Hubbard
model. To the extent that they can be treated as pertur-

FIG. 1. External charge disturbance is applied to the system
at time t', so that a particle-hole pair is created by ho. The
hole scatters with the superconducting condensate (denoted by
the cross and the dotted line) and emerges as a particle. The
particle-particle pair is observed at later time t.
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bative corrections to the Hubbard model, they give rise
to broadening of the &function peaks in the absorptive
parts of the correlation functions. The width of these
peaks is therefore a measure of the departure of the
Hubbard model from reality. In the case of the massless
Goldstone mode, however, the long-range part of the
Coulomb interaction not included in the Hubbard model
has a drastic eA'ect. It leads to a singular perturbation in

the long-wavelength limit and pushes the Goldstone
mode up to the plasma frequency. A similar effect does
not happen for the new collective modes, since they only
couple to density fluctuations with short wavelength
(near tr) and cannot be affected by the long-range part
of the Coulomb interaction.

From the above analysis we conclude that if the Hub-
bard model is a proper theoretical description of high-T,
superconductivity, it necessarily predicts a set of new col-
lective modes in the superconducting phase, independent
of detailed mechanisms through which superconductivity
occurs. Since these modes couple directly to longitudinal
density Auctuations through the operator ho, the energy
of an external charge disturbance can be absorbed into
these modes, with power dissipation given by the &
function peaks in the imaginary parts of the response
functions (7), (9), and (12). An ideal measurement
would be the electron-energy-loss experiment, in which
external electrons scatter inelastically from the sample
with a momentum transfer near Aq =tr. Plotting the in-

tensity as a function of the energy loss, one would find

broad background distributions, due to single-particle
scattering, above T„and a sharp resonance peak below

T„due to the scattering with the collective modes.
Since the existence of such resonances are dictated by
the symmetries of the Hubbard model, the outcome of
such an experiment uniquely tests the validity of the
Hubbard model as a description of high-T, superconduc-
tivity.
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