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Parity nonconservation was studied for seventeen states in ' U by measuring the helicity dependence
of the total cross section for epithermal neutrons scattered from U. The root-mean-squared parity-
violating matrix element for the mixing of p-wave and s-wave states was determined to be M =0.58-me))
meV. This corresponds to a parity-violating spreading width of I "=1.0X10 ' eV. Under plausible as-
sumptions this gives a value of 4X10 for ~ar ~, the ratio of strengths of the P odd and P--even eA'ective

nucleon-nucleon interactions.

PACS numbers: 25.40.Ny, 11.30.Er, 21.30.+y, 27.90.+b

The small (-10 ) parity-nonconserving (PNC)
force in the nucleon-nucleon (NN) interaction causes the
mixing of nuclear levels of the same spin but opposite
parity. Here we report determinations of PNC-mixing-
matrix elements between compound-nuclear (CN) states
in 3 U produced as resonances in the scattering of po-
larized neutrons from 3 U. The PNC mixing leads to a
helicity dependence of the total cross section (longitudi-
nal asymmetry). Interest in such experiments was
stimulated by the observation by the Dubna group' of
large longitudinal asymmetries of order 10 . A sev-

eral-percent effect was observed for the ' La 0.734-eV
p-wave neutron resonance; this result was confirmed at
IAE in Moscow, at KEK, and at Los Alamos. The
origins of the large size of longitudinal asymmetries in

the CN regime are several: (1) first-order interference
between the weak and strong interactions, (2) small CN
level spacings (0.1-100 eV), so that a small PNC force
can produce a large mixing, and (3) large s-wave
scattering amplitudes compared to p-wave scattering
amplitudes; a small admixture of an s-wave state into a
p-wave state produces a large longitudinal asymmetry.

Previous data on the helicity dependence of neutron-
nucleus cross sections were limited in several respects:
(i) parity violation was observed for at most one reso-
nance per nucleus, (ii) all observed effects were for reso-
nances below neutron energy E„=10eV, and (iii) all
observed parity violations were for targets with spin I&0.
The fact that all observed eO'ects were at very low ener-
gies could imply that the parity violations occur only
near threshold. (Bunakov et al. consider this possibili-

ty. ) For IWO, there are two scattering amplitudes corre-
sponding to neutron angular momentum j=l ~ —,'; only
one of these amplitudes contributes to PNC. In the ab-
sence of information on the ratio of these two ampli-
tudes, only limits are determined for the PNC matrix
elements. In the present experiment all of these limita-
tions have been removed, and for the first time we can
determine the root-mean-squared PNC-mixing-matrix
element M between p-wave and s-wave resonances. We
also obtain the spreading width corresponding to M and
the quantity introduced by French, ap, the ratio of
strengths of the P-odd and P-even effective nucleon-
nucleon interactions.

Our measurements take advantage of the intense
pulsed epithermal neutron fiuxes available at the Los
Alamos Neutron Scattering Center (LANSCE). The
800-MeV proton beam from the Los Alamos Meson
Physics Facility linac is compressed in a proton storage
ring from a pulse width of -800 ps to a width of 270 ns.
The extracted protons strike a tungsten target and the
resulting spallation neutrons (-25 per incident proton)
are moderated by water and collimated to produce a
beam. The neutrons are polarized by selective attenua-
tion in a spin filter consisting of a cell of longitudinally
polarized protons. The proton polarization is monitored
by nuclear-magnetic-resonance techniques and calibrat-
ed by measurements of the neutron transmission through
the spin filter. The neutron polarization was about
(40~2)%. The neutron polarization was reversed every
10 s by a system of magnetic fields and every day by
changing the spin-filter pumping frequency. This latter
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method left all magnetic guide fields unchanged. The
neutrons pass through a metallic sample of U (36.0
g/cm ), and are detected in an array of Li glass scintil-
lators, each 1.0 cm thick and 13.3 cm in diameter and
viewed by high-current photomultiplier tubes. The neu-
tron energy is determined by time of flight over the 56-m
distance from neutron source to the detectors. The in-

stantaneous count rates were high (of order 10'%) and
the neutron flux as a function of time was measured by
periodically sampling the phototube current with a tran-
sient digitizer during each neutron burst. ' The sam-

pling frequency was such that the signal was sampled
several times over the time width of the narrowest reso-
nance. A data run consisted of a thirty-minute sequence
of programmed spin reversals which canceled linear and
quadratic tiine-dependent drifts. A total of about 200
such runs was accumulated.

Seventeen p-wave resonances up to E„=300 eV were
analyzed. The transmitted neutron yield in the neigh-
borhood of these p-wave resonances was fitted by the
form

Y~ =N ~C(E„)exp[ naP—'"p(l +' f„P)l,
where N+ is the normalization for + and —helicities,
C(E„)describes the energy dependence of the neutron
flux, the detector efficiency, and the absorption due to
the nonresonant cross section, n is the target thickness,

TABLE I. Helicity differences for neutron resonances.

E, (eV) 10 P,

p-wave resonances in U '
Q; (meV)

op is the maximum value of the p-wave resonance
cross section, p is the Doppler-broadened p-wave line
shape, f„is the neutron polarization, and P = (o+—o —)/(rr+ + cr - ) is the parity-violating longitudinal
asymmetry of the resonance cross section. Sample re-
sults for the 63.5-eV resonance are shown in Fig. l. A
value of the longitudinal asymmetry P was determined
for each resonance for each of the 200 data runs. We re-
port the mean value P for each of the seventeen reso-
nances. The error in each mean rr was determined from
the fluctuations in the individual values of P for that res-
onance. The results are listed in Table I. Five of the
seventeen resonances show greater than 2-standard-
deviation effects (only 0.7 such effects are expected from
random fluctuations). The 63.5-eV resonance has a 6.6o
effect. We are confident that systematic errors are very
small or absent because results for s-wave resonances of
comparable size to the p-wave resonances in 3 U show
no parity violation; these are listed in Table I. (We used
contaminant resonances for this test in order that the s-
and p-wave resonances have comparable transmissions. )

We now consider how to extract the root-mean-
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FIG. l. In the lower part of the figure the neutron transmis-

sion is shown in the vicinity of the 63.5-eV p-wave resonance.
In the upper half the experimental asymmetry c = (N+
—N )/(N++N ) is shown, where N+ and N are the
counts for the two he}icity states.
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'The spins of the resonances are not well determined; approxi-
mately 3 of these should have J 2 and show no parity viola-

tion, while —,
'

should have J 2 and may show parity violation.
These "contaminant" s-wave resonances are comparable in

size to the p-wave resonances in U, and should display no

parity violation.
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squared PNC-mixing-matrix element M from the experi-
mental values of P. The analysis treats individual matrix
elements as independent random variables having a com-
mon Gaussian distribution with mean zero and variance
M . The mean of the matrix element is zero and matrix
elements between diff'erent levels are independent be-
cause in the CN regime many thousands of shell-model

amplitudes having random phases are needed to describe
the wave function of a state. For the mixing of one s-
wave state into one p-wave state the relationship between
the longitudinal asymmetry P and the mixing-matrix ele-
ment V is simple. The expression for P is""
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A plot of L(M) vs M is shown in Fig. 2. The most prob-
able value of M and the most compact 68%-confidence
interval are M=0.58 —+02' meV. We find that the value
of M is insensitive to the ratio of 2 to 2 level densities.
Note that the null values of Q are important in establish-
ing the upper limit on M and the nonzero values estab-
lish the lower limit.

The issue of symmetry breaking in chaotic nuclear sys-
tems is of considerable current interest' ' and has been
studied by French et al. by the techniques of random-
matrix theory. ' It is convenient to define a parity-
violating spreading width I "=2ttM /D, where D is a
level spacing. Spreading widths are expected to show

The neutron widths I," and I z are evaluated at the p-
wave resonance energy. In general, there may be large
contributions from several s-wave states; in this case, the
individual matrix elements cannot be determined. We
adopt the following notation: The longitudinal asym-
metry for the ith p-wave resonance is P;, and is due to
the sum of contributions from the s-wave resonances j,
each with matrix element V~ and the relative weight A;~.
That is,

(I n/I-n ) 1/2

Pt QA~jV~), with A;~ =2
J SJ Pl

The A;~ coefficients are known since they are functions of
known resonance parameters I p, I,", Ep, and E, . Values
are taken from the ENDF/B-VI evaluation. ' Sub-
threshold resonances are included. Our sample of p-
wave resonances is biased in the sense that we observe
only large p-wave resonances. It is reasonable to assume
that the I p are independent of each V~, just as the V~
are independent. Then the selection of stronger p-wave
states does not affect the value of M. In practice, only
the closest few s-wave resonances have large 3;,. Con-
sider the new quantity Q; —=P; (/QA~~ )J't . The sum of in-

dependently Gaussianly distributed random variables
with mean zero is a Gaussian random variable with
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FIG. 2. Likelihood function of the root-mean-squared
mixing-matrix element M. The location of the vertical bars is
the absolute value of the g's (see text) and the heights are pro-
portional to the statistical significance. The shaded region is
the 68%-confidence interval.

much less sensitivity than matrix elements to the excita-
tion energy and nuclear mass. Taking D to be the s-
wave level spacing 21.0 eV gives I =1.0x10 eV.
Near the ground states of light nuclei, D is a few MeV,
and typical measured mixing-matrix elements M are in

the range 0.03-3 eV, which gives a crude estimate for
the spreading width in light nuclei of I —10 eV.

Using the methods of statistical nuclear spectroscopy,
French has established for time-reversal invariance the
connection between symmetry breaking in the CN sys-
tem and symmetry breaking for the eff'ective NN interac-
tion. Assuming this relation to be general, the strength

mean zero. ' Therefore, Q has the same distribution as
each of the V 1, a Gaussian distribution of mean zero and
variance M . (The latter follows from our choice of nor-
malization and the fact that the V~ are independent. )
Therefore M can be determined directly from the set of
experimental values of P; without determining the indi
vidual VJ for each P;. In the present experiment de-
tailed analysis could be performed for seventeen p-wave
resonances. The total angular momentum of p-wave res-
onances can be either 2 or 2, but only the spin- 2 reso-
nances can mix with spin- 2 s-wave resonances and ex-
hibit parity violation. The angular momenta of p-wave
resonances in U are not definitively established. We
expect twice as many p3/2 levels as p1/2 levels. Devia-
tions from this ratio are expected to be small for U
(see von Egidy, Schmidt, and Behkami'5). The likeli-
hood function for M, L(M), is then

+ exp
Q2

3(2zo ) ' 20
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ap of the P-odd effective NN interaction relative to the
P-even part is given by ap =I /(2trx 10 eV). The
present results lead to a value of ~ap~-4X 10 . This
value can be compared with an order-of-magnitude esti-
mate ap —Gpm /G —10,where Gp is the Fermi con-
stant and G, =1 is the strong-coupling constant. The
fact that the values for M and ap are in qualitative
agreement with expectations is very encouraging. The
proposed use of enhancements in the study of time-
reversal-symmetry violation in CN systems thus appears
to be on firm experimental ground.

In summary, we have obtained for the first time values
of CN parity-violating matrix elements free of detailed
assumptions about nuclear spectroscopy. Results for
seventeen resonances provide the first determination of
the variance of the parity-violation matrix element. The
value of M 0.58+oszos meV corresponds to a spreading
width of I =I.OX 10 eV. It would be of interest to
determine the variance M for other nuclei, in particu-
lar, to study the possible dependence of I" on mass
number and excitation energy. An estimate for the sym-

metry breaking in the effective NN interaction, ~ap~
-4 x 10, is obtained from the measured variance M .
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