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Experimental Study of Critical-Mass Fluctuations in an Evolving Sandpile
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We have carried out an experiment in which sandpiles are built up to a critical size and then per-
turbed by the dropping of individual grains of sand onto the pile. After each grain is added, the size of
the resulting avalanche, if any, is recorded. For su%ciently small sandpiles, the observed mass fluctua-
tions are scale invariant and the probability distribution of avalanches shows finite-size scaling. This
demonstrates that real, finite-size sandpiles may be described by models of self-organized criticality.
However, we also find that this description breaks down in the limit of large sandpiles.

PACS numbers: 64.60.Fr, 05.40.+j, 05.70.jk, 46. 10.+z

Recent theoretical investigations have shown that
when certain spatially extended nonequilibrium systems
are driven, they naturally evolve into a critical state. ' "
This state is barely stable and, when it is perturbed, the
resulting relaxation processes are scale invariant. That
is, they are characterized by an infinite correlation
length, and so occur on all length and time scales up to
limits determined by the finite size of the system. The
occurrence of such critical states in nonequilibrium sys-
tems is spontaneous; it does not require, as in equilibrium
systems, the tuning of experimentally adjustable parame-
ters to particular values or critical points. The robust
nature of this "self-organized criticality" had led Bak,
Tang, and Wiesenfeld' to suggest that it may account
for the ubiquitous presence in nature of scale-invariant
phenomena such as 1/f noise and fractal structures.

One system which has been studied extensively as a
paradigm for self-organized criticality is the theoretical
sandpile. ' Several cellular-automaton models of
sandpiles have been shown both numerically and analyti-
cally to exhibit scale invariance under generic condi-
tions. As theoretical grains are dropped onto a pile
which has reached a steady state, the resulting distribu-
tions of both avalanche sizes and lifetimes typically ex-
hibit scale-invariant behavior, i.e., fall ofl' as powers of
avalanche size and lifetime, respectively. Experimental-

ly, power-law dependences of this type have been report-
ed for "avalanches" of domain-wall boundaries of meta-
stable cellular patterns in magnetic garnet Alms. How-
ever, in an experimental study of sand at the angle of re-

pose, Jaeger, Liu, and Nagel' reported avalanche distri-
butions in both size and lifetime which were sharply
peaked at nonzero values, in contrast to the theoretical
models.

We present here the results of an experimental study
of the dynamics of an evolving sandpile. The sandpile is
built up to a steady state and then subsequently per-
turbed by the addition of single grains of sand. After
each grain is added the size of the resulting avalanche, if
any, is recorded. Our main results follow: Sufficiently
small sandpiles show broad, scale-invariant distributions
of avalanche sizes. Moreover, the distributions exhibit
finite-size scaling in the linear size L of the pile. This
suggests that these sandpiles are in a self-organized criti-
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FIG. 1. Schematic illustration of the experimental ap-
paratus.

cal state. However, for larger sandpiles we find that the
distribution of avalanches becomes sharply peaked, and
the scale invariant description of the system breaks
down. This is discussed below.

Our experiment differs in two main ways from those of
Ref. 10. First, our sandpiles are built on circular disks
and, thus, the flow of sand down the pile is intrinsically
two dimensional. In the experimental geometries em-
ployed in Ref. 10 the sand was inclined along only one
direction. Second, by adding sand to the pile one grain
at a time, and always waiting for avalanches to subside
before dropping another grain, we are able to parallel
more closely cellular-automaton models known to exhibit
self-organized criticality.

Our experimental apparatus is illustrated in Fig. I.
The sand is dispensed through a funnel which was
formed by fusing a 9-in. -long 0.080-in. -i.d. capillary tube
to the end of a 250-ml leveling bulb. This funnel is filled
with sand and rotated about its axis by a computer-
controlled dc motor at approximately 1 rev/s. The capil-
lary tube is angled slightly downward, and the rotation
results in the formation of a row of sand grains which
travel single file through the tube. When a grain falls
out of the tube it lands near the top of a sandpile which
is built on a circular disk, which, in turn, is supported on
the weighing pan of a Mettler AT250 analytic balance.
The balance is interfaced to an IBM PC which monitors
the mass of the sandpile. When a change in mass com-
parable to a grain of sand is detected, the computer stops
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the rotation of the funnel (and thus the flow of sand) un-
til any avalanches have occurred and the mass of the pile
has restabilized. The dropping process is then resumed.
Any sand which falls off the pile lands on a metal skirt
and is no longer included in the mass measured by the
balance. In this fashion, we obtain the mass of the sand-
pile as a discrete function of the number of grains
dropped onto it; irregularities in the dropping rate, as
well as variations in the durations of the avalanches, are
effectively removed from the data. The average time be-
tween dropping events is approximately 10 s and the la-
teral precession of the end of the capillary tube over the
sandpile is approximately 0. 1 in. For most of the experi-
ments the sand grains fell 3-4 in. between the end of the
capillary tube and the top of the sandpile.

The data shown below were taken using aluminum-
oxide particles sieved between 20- and 25-mesh/in.
screens. The average mass of a particle was 0.0006 g.
Sandpiles with base diameters of 0.38, 0.75, 1.5, and 3.0
in. were studied. Comparable results were obtained us-

ing similarly sieved beach sand with 0.75- and 1.5-in. -

diam bases.
In Fig. 2(a) we plot the fluctuations in the mass of a

sandpile with a 1.5-in. -diam base over 30000 dropping
events. In Fig. 2(b) we show a 15x magnification of the
small boxed region of Fig. 2(a). In Fig. 2(c) we magnify
20x the small boxed region of Fig. 2(b). On this last
scale, changes in mass corresponding to single grains of
sand are observable. It is clear from these plots that the
mass of this sandpile exhibits fluctuations over periods
ranging from one to several thousand dropping events,
with avalanches ranging between one and several hun-
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To quantify these fluctuations, we plot in Fig. 3(a) the

probability density P(M) of an avalanche of mass M for
sandpiles with base diameters of 0.38, 0.75, and 1.5 in.
For all of these pan sizes, the probability of an avalanche
falls off monotonically with increasing avalanche size.
For the 1.5-in. -diam sandpile, this falloff is approximate-
ly a power law, P(M)-M, for avalanches between
0.002 and 0.05 g (i.e., between 3 and 80 grains). The
falloff in P(M) is not exponential for any of the sand-
piles, nor is P(M) sharply peaked at a particular
avalanche size. %ith increasing base diameter, the prob-
ability of large avalanches increases while that of the
small avalanches decreases. If this system does indeed
exhibit scale-invariant fluctuations similar to those ob-
served at the critical point of a second-order phase tran-
sition, one would expect the distribution of avalanches to
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FIG. 2. (a) Mass of the 1.5-in. -diam sandpile as a function

of the number of grains dropped onto it. (b) Magnification of
the boxed region of (a) between 19000 and 21000 grains

dropped. (c) Magnification of the boxed region of (b) between

700 and 800 grains dropped. (d) Mass of the 3.0-in. -diam

sandpile as a function of the number of grains dropped onto it.
The fine-scale mass fluctuations observed for the 1.5-in. -diam

sandpile are no longer present.
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FIG. 3. (a) Probability distribution of avalanches P(M) as

a function of avalanche mass M for sandpiles with base diame-
ters of 1.5 (e), 0.75 (&), and 0.38 (a) in. Units of probability
density P(M) are g '. For each base diameter, the range of
avalanche sizes AM included in a given data point P(M) in-

creases quadratically with mass. (b) The probability distribu-
tions from (a) rescaled by Eq. (I) with 13=2v 1.8. Mass and
probability density are rescaled to ML and P(M)L ", re-

spectively, where L is the base diameter in inches.
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FIG. 4. Power spectrum of the mass fluctuations of the 1.5-
in. -diam sandpile. The dashed line shows a 1/f' power spec-
trum for comparison. The spacing between data points of the
spectrum is 6.1&10 ' step ', with the data at frequencies
above 0.002 step ' smoothed by an averaging over 0.0014-
step intervals. The time unit (steps) is defined as the inter-
val between grains of sand being dropped on the sandpile (see
text).

show finite-size scaling of the form'

P(M, L) (1/L~) g (M/L '),
where P(M, L) is the probability of an avalanche of
mass M for a sandpile of base diameter L, and g is a
universal function. Further, the requirement that for
each grain added an average of one must fall off results
in the constraint "P=2v. We rescale the data shown
in Fig. 3(a) using Eq. (1), finding that for P=2v=l. 8
the rescaled avalanche distributions for the difl'erent size
sandpiles lie almost exactly on the same universal curve
g(M/L") [Fig. 3(b)]. This indicates that the data do
indeed show finite-size scaling. We note that cellular-
automaton models for 2D sandpiles were also reported
to scale according to Eq. (1). The data in Figs.
2(a)-2(c) and 3 demonstrate that the sandpiles shown
are in a self-organized critical state.

The mass power spectrum of the time series for the
1.5-in. -diam sandpile is shown in Fig. 4. At frequencies
above fo=0.0003 step ', this spectrum falls ofl' as 1/f .
This is consistent with the power spectrum of a weighted
random walk. That is, if the net mass change ri(t) re-
sulting from an added grain is on average zero [i.e.,
(ri(t)) =Ol while the correlation function (g(t)rl(t'))
=(go) 6(t —t') for some rio not equal to zero, it is easy
to show that one obtains a 1/f power spectrum. Thus,
the 1/f spectrum of Fig. 4 suggests that the sizes of the
different avalanches in our data have at most short-range
correlations in time. At frequencies below fo, the power
spectrum levels off. This is expected because the mass of
the sandpile, and thus the random walk, is bounded by
an upper limit Mo. Increasing the base diameter of the
sandpile, we observe both an increase in Mo and a corre-
sponding shift downward in fo
1122

The unit of time used in computing the above power
spectrum is the time between dropping events. That is,
regardless of the actual time elapsed between two grains
of sand being dropped, the time interval is recorded as a
single time step. As a result, the actual durations of
the different avalanches have no effect on this power
spectrum —all of the avalanches are effectively instan-
taneous. However, because even the largest avalanches
occur on a time scale negligible compared to the time be-
tween dropping events, this definition does not affect the
power spectrum over the frequency range measured.
This is a consequence of the finite size of our system; if
the sandpile were arbitrarily large (and still remained in

a self-organized critical state), there would presumably
be avalanches occurring on arbitrarily long time scales,
and so treating the avalanches as instantaneous would

strongly affect the spectrum. However, even in the limit
of an infinite system and perfect experimental time reso-
lution, it is not clear that the mass power spectrum of a
self-organized critical sandpile would show 1/f' noise
with a-1. The falloff of the power spectrum depends
importantly on the temporal structure of the individual
avalanches, the distribution of avalanche durations, and
the manner in which different avalanches are superposed.
Recent numerical simulations of an automaton-model
sandpile, which certainly shows self-organized criticality,
found it to exhibit a 1/f power spectrum.

In Fig. 2(d) we plot M(t) for a 3-in. -diam base sand-
pile with a distance of 0.25 in. between the capillary tube
and the top of the sandpile. It is quite clear that this sys-
tem behaves in a fundamentally different manner from
the others described above; the small fluctuations in mass
have disappeared and almost all of the mass flow off the
sandpile occurs through large, regularly spaced ava-
lanches. This behavior is essentially that of a relaxation-
al oscillator, and is similar to that reported in Ref. 10.
There are several qualitative differences between the 3-
in. -diam sandpile and the smaller ones which could ac-
count for this crossover. For the small sandpiles, almost
all of the disturbances which propagate more than a few

grain diameters result in some net flow off the pile. In
contrast, on the 3-in. pile there are many local
avalanches which propagate for distances of an inch or
more, yet stabilize without any grains falling off the pile.
Additionally, most of the sand which flows off the small-
er piles appears to originate near the surfaces of these
piles, whereas the large avalanches observed for the 3-
in. -diam pile result from the flow of sand further below
the surface. After an avalanche, one side of this pile is
noticeably concave. The presence or absence of self-
organized criticality may therefore be related to a damp-
ing length scale which we do not fully understand.

Another important experimental difference between
this 3-in. sandpile and the smaller ones is that the dis-
tance between the dropper and the top of the 3-in. pile is
much smaller. As a result, less kinetic energy is added to
the system with each grain. This presumably enhances
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the role of static friction in the behavior of the pile,
which can build up to a limit determined by the coef-
ficient of static friction, and then relax back through the
large avalanches to an angle of repose determined by the
coefficient of sliding friction, which is smaller. To better
determine the relationship between the height from
which the grains are dropped and the resulting sandslide
dynamics, we have collected data at various dropper
heights for the 1.5- and 3-in. sandpiles. We find that
while raising the dropper to a height 4 in. above the top
of the 3-in. sandpile does introduce some small
avalanches, the net mass flow continues to be dominated
by the large (-5 g) avalanches. Further, setting the
dropper height at 0.25 in. above the 1.5-in. -diam sand-
pile does increase the number of large avalanches, but a
significant number of small mass fluctuations remain.
We have not yet been able to observe cleanly a crossover
from self-organized critical behavior to relaxational os-
cillations by simply decreasing the height of the dropper
over a single sandpile. Still, it seems reasonably clear
that in a series of measurements wherein the diameter of
the sandpile is increased while the height difference be-
tween the dropper and the top of the pile is held fixed,
the behavior of the system will exhibit such a crossover.
Additionally, we have increased the lateral region over
which the grains are dropped onto the 3-in. sandpile by
increasing the lateral precession of the dropper to 0.3 in.
We find that this increase has no apparent effect on the
system. Further experiments to determine the exact na-

ture of the transition between the regimes of self-
organized criticality and relaxation oscillations are cur-
rently in progress.

In conclusion, we have observed self-organized criti-
cality in the dynamics of several different size sandpiles.
The mass fluctuations in small sandpiles show critical
finite-size scaling similar to that associated with second-
order phase transitions. However, the largest sandpile
studied showed relaxational oscillations, rather than
scale invariance. Thus, our data suggest, but do not

prove, that the occurrence of self-organized criticality in
the present experimental geometry is a finite-size eAect.
The size at which the system crosses over to relaxation
oscillations depends on experimental parameters such as
the distance between the dropper and the top of the
sandpile. It is hoped that further studies will clarify the
precise nature of this crossover.
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