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One-dimensional reductions of the self-dual Yang-Mills equations yield various classical systems de-
pending on the choice of the Lie algebra associated with the self-dual fields. Included are the Euler-
Arnold equations for rigid bodies in n dimensions, the Kovalevskaya top, and a generalization of the
Nahm equation which is related to a classical third-order diff'erential equation possessing a movable nat-
ural boundary in the complex plane.

PACS numbers: 03.20.+i, 02.90.+p, 03.50.Kk

One of the richest "exactly solvable" systems is the
self-dual Yang-Mills (SDYM) equations. These equa-
tions arise in the study of field theory' and relativityz
and have wide classes of interesting solutions. Recently
it has been shown that these equations admit reductions
to many well-known classical systems including the "soli-
ton" equations in one space and one time (1+1) dimen-
sion.

In this Letter we study the reductions of SDYM equa-
tions in one (0+1) dimension. We find as special cases
the Euler-Arnold equations for rigid bodies, the Ko-
valevskaya top, and a generalization of the Nahm equa-
tion that we refer to as the "Chazy" top. The latter sys-
tem can be transformed to a classical differential equa-
tion studied by Chazy. The reduction of soliton systems
generally possesses the so-called Painleve property (i.e.,
solutions have only movable poles in the complex plane).
In fact, it was originally Kovalevskaya who employed
local singularity analysis to uncover the cases in which
the equations of a rigid body in a gravitational field and
with one point fixed could be integrated exactly. Howev-
er, Chazy's equation possesses a natural boundary in the
complex plane and as such differs from the other reduc-
tions of the SDYM equations described above which are
solved in terms of Riemann theta functions.

F p=F-- F -+F -=0.+p ap aa pp (2)

This is a system of three partial differential equations in-
volving the y, 's and can also be obtained as the compati-
bility condition of the following Lax pair:

(a.+ ga;)e =(y.+gy;)e,

(a, +pa. )e=(y, +gy. )e-, -
(3)

where g is a complex parameter often referred to as the
spectral parameter. The compatibility condition is ex-
pressed as a polynomial in g,

(a.+pa;)(y. +gy;) -(a,+pa.-)(»+gy.-)
= [(y.+ gy;), (y, +gy.-)] . (4)

Define the YM field as

F.b -a.yb aby. —[y.—, ybl,

where a, a/ax', x' being the coordinates in Euclidian
space E . The y, 's are the YM potentials and take
values in some Lie algebra with [, j in (1) being the as-
sociated Lie bracket. In terms of standard null coordi-
nates a t+iz, a t —iz, p x+iy, and p=x iy, the—
SDYM field equations are given by
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tl p j z [I/(pi+Pk) 1/(pj+pk)]p(kpk
k

(6)

where we have set a; =(p;) . Equation (6) is the Euler-
Arnold' equation for free motion of an n-dimensional
rigid body about a fixed point. Specifically when n=3,
taking p;, Lk, p;+pj=Ik, one recovers from (6) the
Euler equation for a free, spinning top about a fixed
point:

B,L; =LjLk(Ik I, )/I, lk, i&j~k—and cyclic.

The L s are the usual angular momentum components in
the body frame, the I s are the principal moments of in-

ertia, and a is the complex "time" variable. The non-
trivial constants of motion are obtained from (a) the
coefficient of g in Tr(X() =Tr(yp) =g;L, and (b)
the coefficient of (, in Tr(X() =3Tr(y;yp) . The first
yields the square of the total angular momentum; the
Hamiltonian is then obtained from (b).

1086

Equating independent powers of ( (P, n =0, 1,2) yields
(2).

Reductions are obtained by allowing the y, 's to de-
pend on only one independent variable and then choosing
an appropriate gauge group for the field variables. Our
motivation is as follows: (1) By letting the field variables
depend on only the time coordinate the field equations
are greatly simplified while maintaining physical content.
(2) The reduced phase space of a Hamiltonian system
admitting a group of symmetries can be described by the
cotangent bundle of a Lie algebra with a canonical sym-
plectic structure. It is therefore convenient to construct
Lie-algebraic embeddings of the phase space and study
the flows in the resulting symmetric spaces. ' Our ap-
proach is to consider the phase-space variables as the
YM field variables with the underlying gauge group as
the symmetry group of the dynamical system and the
SDYM equations describing the resulting phase flow.
Examples follow.

Case I: The Euler Arnold -top Let.—y, = y, (a).
Then (4) can be written in the Lax form as

tl.di = [Xi,Ati],

where 2 i yp+ (y; and Ati = —(y, + (yp).
The Lax form is intimately related to the integrability

of the system since the conserved quantities are incor-
porated naturally. One can check from (5) that
t)a Tr(X )"=0, n 1,2. . . , which when expanded in a
power series in the parameter ( yields the constants of
motion. These are the reduced versions of the infinitely
many conserved currents associated with SDYM equa-
tions' which can also be obtained from the Lax pair (3).

The reduction is effected by allowing the y, 's to take
values in the Lie algebra su(n). In particular, we take
y;=diag(a;) and y- diag(p;), i =1. . n, to be .in the
Cartan subalgebra of su(n). Furthermore y, = [a;j] and

yp [p;, ] are chosen to be in the subalgebra so(n). Then
from (5) we obtain after some manipulations

Case II: The Kovalevskaya top and its general
izations —.In this reduction we take y, =y, (t) and in
the so(p, q) algebra, Eq. (4) can be written in the Lax
form as

8, /ii = [Xi(,At(i],

where Xii =
yp

—2i(y, —( yp and At(i = —(y, +i y,
+i,"yp). y, and y, +iy, are chosen so that they lie in the
maximal subalgebra K =so(p) 6so(q), whereas yp and

y& are in the orthogonal complement to EC. The classical
Kovalevskaya system is obtained by considering the alge-
bra so(3, 1). The y, 's are represented by the following
4 x 4 matrices expressed in a 2 & 2 block form:

P

03x3 V3x l L3x3 03x l

Yp VT 0 ' Y' 0T 0

03x3 C3x l 3x3 03x l

CT 0 ' y'+'y' OT 0lx3 lxl lx3 lxl

with Vix3 (gi gz g3) the field vector, Cix3 (ci cz c3)
the center-of-mass vector, L3x3 [L;jl, L(j =eke(jkLk,
e Jk the totally skew symmetric tensor with ei z3

= 1, and
Lk the angular momentum components. m3x3 has the
same form as L3, 3 with L; replaced by to; (angular ve-
locity); L; =I;co;, I; being the principal moments of iner-
tia. Equation (7) yields the equation of a "heavy top"
rotating about a fixed point in the moving frame:

t)(L=Lxm+gxc, tl(g=gxm.

L (Li,L2,L3) plus conditions on the I s depending on
the choice for the center-of-mass vector c (essentially
those of Kovalevskaya). For so(p, q) one can obtain
from (7) generalizations of the Kovalavskaya case. "
As in case I, the integrals of motion for the so(p, q) sys-
tems are obtained by expanding Tr(Kit)", n =1,2. . ., as
a power series in (,". In particular, the coefficient of ( in
Tr(Kit) yields the Hamiltonian; the remaining nontrivi-
al integrals of motion are obtained from traces of higher
exponents of Xii.

Case III: The Nahm and Chazy equations We take. —
y, =y, (t) as in the previous case and y, 0 by utilizing
the gauge freedom of the SDYM field equations (2).
Then from (2) or (4) we find that the remaining y, 's

satisfy

y i Z ejk [yj yk]'
j,k

where i,j,k =1,2, 3 (or x,y, z) [i.e., y =(yp+ yp)/2,
etc.]. The Nahm and Chazy equations are obtained
from (8) by taking the y, 's in su(2). It is convenient to
work with the representation of SU(2) in S and express
the y, 's in terms of the left-invariant vector fields:

Xi =cosytl((+ (sin(t(/sin8) |l(,—cot8sinit(tl

Xz = —sin ij(8((+ (cosit(/sin 8)8(, —cot 8cos(j(8~,

X3 =8~,
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where 8, p, and ijr are the Euler angles and [X;,Xj]
=gke~jkXk. Setting y;=co;(t)X; (no sum) in (8) one
obtains the Nahm equations: B,co; =cojcok, i&j &k and

cyclic. Next, consider the adjoint action in su(2):
y; y =gy;g ', g C SU(2). It is well known that this
automorphism induces a homomorphism p(g) C SO(3)
and the y; transforms like a triad in so(3) as

yi yi =ZO;, yj =QOljcuj(t)Xj .
J J

0 E SO(3) is expressed in terms of the Euler angles in

the usual manner. Substituting the y;"s in (8) and tak-

ing into account the extra contributions from the Lie
bracket [due the action of the vector fields X; on

0;j(8,$, iji)j one obtains

el ca; =tajtak —ta;(taj+tak), i' &k and cyclic,

where we used the following:

Z ~ij k Oip Oj q Okr ~pqr i
i,j,k

~ijk~imn 2 (~jm~kn an~km�)

Xi(Ojk ) g a;kpOjp .
P

Indeed, (9) arises as the self-dual Einstein's equation for
Bianchi-IX cosological models. ' ' By taking y= —2
x (ca i + ta2+ ca3), (9) yields

(10)

which is the classical Chazy equation. Given a solution
of y(t), one can recover the ca s in a straightforward
way. Equation (10) can be solved by introducing a new
variable s such that y(t(s)) =68, (lnzi), t(s) =z2/zi,
where zi and z2 are two independent solutions of the
hypergeometric equation: s (1 —s )z"+ [ &

—7s/61 z'
—z/ 144 0. These facts are verified by direct calcula-
tion.

The mapping t t(s) takes the upper-half s plane into
the interior of a spherical triangle with angles 0, tt/2, and
tt/3. For a detailed description of this mapping, see for
example, Nehari. ' The mapping t(s) can be analytical-

ly continued by successive reflections of the upper-half s
plane about the real line and by corresponding inversions
of the fundamental triangle across its sides to compli-
mentary triangles. However, these triangles do not cover
the whole t plane but (in the limit of successive inver-

sions) "tile" a region of the t plane bounded by a circle
C. The inverse mapping S(0,tt/2, tt/3;t) (which is the
Schwarzian triangle function) is single valued (for these
choices of parameters), meromorphic, and possesses a

natural boundary as it cannot be analytically continued
beyond C. Since S(t) is invariant under a Mobius trans-
formation, t' (at+b)/(et+d), this natural boundary C
is movable. t(s) is one of a variety of such mappings re-
lated to Fuchsian differential equations which play an
important role in the uniformization of the Riemann sur-
faces. '
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