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Quantum Dots in a Magnetic Field: Role of Electron-Electron Interactions
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The eigenstates of electrons interacting in quantum dots in a magnetic field are studied. The interac-
tion has important effects on the magnetic-field dependence of the energy spectrum. However, when the
confinement potential is quadratic, the optical excitation energies of the many-body system are exactly
the same as those of a single electron. This makes the interaction effects difficult to observe directly but

they could be seen by measuring the thermodynamic properties of the electrons. This is illustrated with

the calculations of the electronic heat capacity.

PACS numbers: 73.20.Dx, 71.45.Gm, 72.15.Rn

Rapid advances in semiconductor technology have led
to the fabrication of zero-dimensional structures called
quantum dots. Essentially, they are little islands of two-

dimensional electrons which are laterally confined by an

artificial potential. Alternatively, they can be thought of
as artificial atoms where the confining potential replaces
the potential of the nucleus. Typical dot sizes are about
100 nm and each dot typically contains between 2 and

200 electrons. ' While several current experiments'3
have focused attention on various properties of quantum

dots in a magnetic field, their theoretical understanding
is still in its infancy. In particular, the effect of the elec-
tron-electron interaction has not yet been investigated al-

though Bryant has emphasized its importance in the
case of zero field. The purpose of this Letter is to
present a detailed study of quantum dots in which both
the magnetic field and the electron-electron interaction
are fully taken into account. First, numerical calcula-
tions of the electron states are used to show that the
electron-electron interaction is highly important and
leads to unusual magnetic-field dependence of the

ground state and its excitations. Next it is shown that,
when the confining potential is quadratic, far-infrared
(FIR) spectroscopy is insensitive to interaction effects
because the center of mass (cm) and relative motions
then separate in the same way as for the free electrons.
This explains recent experimental results which show

that the effect of the interaction is apparently very
small. ' Finally, results for the heat capacity are present-
ed to suggest that the effect of the interaction could be
probed by measuring the thermodynamic properties of
the electrons.

The first step in calculating the electron states is to
find the eigenstates of a single electron. It is believed

that the dots currently studied experimentally confine the
electrons by a potential that is quadratic to a good ap-
proximation when the electron number n, is small. '
Therefore the calculations reported here have been done
for the case of ideally two-dimensional electrons, in a cir-
cular dot, confined by a radial potential of the form

2 m*coor with a magnetic field B perpendicular to the

plane of the dot and m is the electron efl'ective mass.
The corresponding single-electron states were first de-

rived by Fock and Darwin and later studied in detail
by Dingle. Apart from a normalization constant they
have the form

v (r) =r "~ exp( lie)L —~'~(r'/2a')exp( —r'/4a'),
where L„' is a Laguerre polynomial, a =(h, /m )(to,
+4tott) 'I, and co, =e8/m*. The single-electron ener-

gies depend on the two quantum numbers n and 1,

E„t=(2n+1+ il i )lt, ( —' to +to )'I ——' lhto

but in the limit, when coo 0, they reduce to E„t=[n
+ —,

' + ( ) 1 )
—1)/2] h co, and depend only on the quantum

number N-n+(~l
~

—1)/2. Physically, N is the Lan-
dau-level index and —1 is the angular momentum quan-
turn number. Without the confining potential the ener-
gies of the positive 1 states would be independent of 1 but
in its presence they increase with 1. This is the key
difference between the behavior of free and confined
electrons. It is reponsible for much of the new physics
reported here.

To calculate the states of the interacting electrons it is

supposed that 8 is strong enough to keep them spin po-
larized. This assumption allows the interplay between
the effects of confinement and interaction to be studied
without including extra complications. The role of spin
is briefly discussed later in this Letter. In the spin-
polarized case the constant Zeeman term can be ignored
so the Hamiltonian is

S = g (p;+eA;) +—m to02 g r~1
'

2 1

2m i-1 2 i-l
+1 e g 1

2 4tteeo;~l ~rt
—r, ~

'

where ceo is the dielectric constant. The interaction be-
tween electrons in different dots is neglected but this
should be a good approximation because the dot spacings
are typically larger than dot sizes. The neutralizing posi-
tive background present in real systems is also ignored.
For an infinite system it cancels the divergence caused by
the Coulomb repulsion but for a single dot all the matrix
elements of the Coulomb interaction are finite. In the
case of a periodic array of dots with a large spacing of
the background cancellation merely leads to a constant
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shift of the energy levels for the single dot. The eigen-
states of the system are eigenstates of the total angular
momentum, which is conserved by the electron-electron
interaction. They can be classified by a quantum num-
ber J, which is the sum of the single-electron I values.
The states are calculated by numerically diagonalizing
the Hamiltonian. Landau-level mixing is taken into ac-
count but is found not to influence the physics. Its effect
is estimated quantitatively from trial computations
where an extra Landau level is included. For the param-
eters considered here the low-lying energy levels con-
verge to 7% (n, =4) or 2% (n, 3) when only two Lan-
dau levels are taken into account. The convergence of
the ground state is better and its optical excitation ener-
gies agree to within 10% (n, 4) or 2% (n, =3) with the
expected cm excitations (see below). For higher electron
numbers or lower 8 the effect of Landau-level mixing
would be more important.

The energy levels of the three and four electron sys-
tems are shown in Fig. 1. They have been calculated us-

ing parameters appropriate to GaAs and a value of 4
meV for hroo. The energies are given relative to what
would be the lowest Landau level, that is, the constant of
i'i ( —,

'
co, + r002) 'i per electron is not included. Each

frame of the figure shows total energies plotted against J
at magnetic fields representative of low- and high field-
behavior. Clearly there are always two sets of broadened
levels separated by a gap. In the limit of zero confining
potential these would be the lowest two Landau levels.
The general trend is that the energies increase with J be-
cause the single-electron energies increase with i. This is
most clearly seen at 8=2 T; at high field the increase is
much weaker. Calculations for five and six electrons
show the same physics but they are not so well con-
verged.

The main difference between high- and low-field be-
havior is the angular momentum of the ground state. At
8 2 T this occurs at the lowest available J, that is, the

smallest angular momentum compatible with placing all
the electrons in N =0 states. For example, for three
electrons the ground state is at J=3 which is formed
from the I values 0+1+2. If the electrons did not in-
teract, the ground state would have the lowest available
J provided B is so high that only N=O is relevant. Be-
cause of the interaction, however, the ground-state J in-
creases with 8. This effect is caused by the interplay of
the single-electron energies and the interaction energy.
It can be understood in terms of a simple calculation in

which only the iV 0 states are taken into account. In
this case the single-electron contribution to the energy is

simply h [(—,
'

ro, + aio) ' ——,
'

co, ]J (relative to the lowest
Landau level), but the interaction contribution has to be
obtained by numerical diagonalization. Figure 2 shows
these two contributions together with their sum. The
single-electron contribution increases linearly with J be-
cause electrons in high angular momentum states see a
higher confining potential. In contrast, the interaction
term decreases because electrons with higher angular
inomenta move in orbitals of larger radii, thereby reduc-
ing their Coulomb energy. The net result is that the to-
tal energy as a function of J has a minimum. At low
field this occurs at the lowest available J because the
single-electron energy increases steeply with J. At high
field the increase is much weaker so the minimum occurs
at a higher J value. Since each J value has its own set of
energy levels, changing the field has a dramatic effect on
the excitation spectrum as well as the ground state.

The ground state does not take all possible values of J
because the interaction energy does not change continu-
ously with J. Instead it contains steplike structures
which occur at particular J values (see arrows in Fig. 2)
and are possibly analogous to the energy cusps in the
fractional quantum Hall effect. ' Because the total en-

n, =3 B=10T
no Landau level
rn I x lng

70 ne-4

e 60-
50-E

~ 40-
30
70 „ne= 4

60-
E—50-

40-

B=ST

B= 2T

fle- 3
40-

30

20

Ae= 3
40-

30-

20-

B =10T

B= 2T

20—
0)

10—

~O

~
i' +

~ i. . . ' total
~ —~

single
~ —~-,- electronIi

~ -0 ~

~ ~ ~

interaction

I I I I I I I

0 2 4 6 8 101214
I I I j I I I I

01 234567 8
0—

0 10 20

FIG. l. Energy levels as a function of J for three and four
electrons in a GaAs quantum dot. Each frame corresponds to
a different magnetic field as indicated.

FIG. 2. Contributions to the total energy as a function of J.
The points give energy values and the lines are to guide the
eye. Arrows indicate the steps in the interaction energy.
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ergy is the sum of the single-electron and interaction
terms, the steps lead to minima in the total energy as a
function of J and the ground state always occurs at one
of these. For example, in Fig. 2 the global minimum
occurs at J 6 but there is another minimum close to it
at J 9. If the field was increased to 10.4 T, this would
become the global minimum; further increasing the field
would cause the global minimum to occur at J=12 and
so on. Using the well-known formula v=n, (n, —1)/2J
(which is obeyed by the Laughlin states' ), one can con-
vert the sequence of favored J values to effective filling
factors. We find that the three electron states go
through the sequence of v values 1, 2 3 4 . . and the
four electron states go through 1, 5 7 3 ~ . . It is re-
markable that even denominators occur in addition to
the usual odd ones. " We emphasize that the multiple
minima in the ground-state energy only occurs in the
presence of confinement: With no confinement the steps
in the interaction term persist but the single-electron
term vanishes, consequently there are no minima at finite
J.

The rich structure of the energy spectra shown in Fig.
1 is in complete contrast with current experimental re-
sults on FIR absorption. These have just two features
whose energies seem to correspond to single-electron ex-
citations. To explain this apparent contradiction it is
necessary to consider the perturbation due to the elec-
tromagnetic radiation. Typical wavelengths are 50 pm
while typical dot sizes are 100 nm so the dipole approxi-
mation holds to a high degree of accuracy. In other
words, the electrons see a perturbing vector potential
which is independent of position within the dot, or equi-
valently, a position-independent electric field Eo
xexp( —icot). The perturbing Hamiltonian therefore
has the form /f' g~"-'~eEO rjexp( —irot) This de-.

pends only on the sum of the electron coordinates; hence,
it can be expressed in terms of the cm coordinate
R g; r;/n, and the total charge Q n, e, that is,
P' QEO Rexp( iait) —To un. derstand the effect of
this it is convenient to rewrite the Hamiltonian (1) in

terms of the cm and 3(n, —1) coordinates relative to it.
These are most conveniently chosen to be r r; —R,
where i ranges from 1 to n, —1. The coordinate of the

n, th electron is then given by r„, R —P,"-'~ r and the
Hamiltonian becomes
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follows that FIR radiation excites the cm but does not
affect the relative motion. Further, the cm Hamiltonian
has the same form as the Hamiltonian of a single
confined electron. In addition, it has exactly the same
energy eigenvalues because co, in the expression for E„I
depends only on the charge-to-mass ratio Q/M =e/m*.
Consequently, FIR absorption experiments see only
features at the single-electron energies. '

How then is it possible to observe the effects of the
electron-electron interaction? There seem to be two pos-
sibilities. One is to change the shape of the dot to force
coupling of the cm and relative motions. It is possible
that this is responsible for some level-crossing eff'ects ob-
served in recent experiments. The second possibility is

that the interaction should affect thermodynamic proper-
ties, for example, the electronic heat capacity C,, (which
is observable ' ).

To test this idea the magnetic-field dependence of C,,

has been calculated. As usual, this is found from the
temperature derivative of the mean energy. For simplici-

ty Landau-level mixing is neglected, but this does not
leave out any essential physics. Figure 3 gives C, , ex-
cluding the Zeeman contribution (which is a small, slow-

ly varying background). For interacting electrons C,,

(solid lines) is clearly very different from that of nonin-

teracting electrons (dotted lines). In particular, when

the electrons interact C,, oscillates as a function of B and
has minima that are associated with crossovers from one
ground-state J value to another. (The dashed lines in

Fig. 3 indicate the ground-state J.) The oscillations in

C,, are a many-body eff'ect, unlike the low-field oscilla-
tions in C,. for a two-dimensional electron gas. ' Their
origin is best understood by considering the curves for
T 1 K. At this very low temperature the dominant
contribution to C, , comes from two competing ground
states. This causes the doublet structure around the
crossovers and can be understood in terms of the B
dependence of the gap between the corresponding ground

'P (P+QA) + 2 McooR +It'„i,
0.2

~ n, =4 T =1K
0.2

ne= 3 T =1K

where P-g;-'~p;, A is the vector potential of the cm,
and M =n, m . The last term 'P„~ is a function of only
the relative coordinates and contains all the effects of the
interaction. The Hamiltonian clearly separates in the
same way as established long ago' for the case of no
confining potential. This is a very special property of
quadratic confinement —if the potential was different,
the cm motion would couple to the relative motion. It
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FIG. 3. Heat capacity C,. as a function of magnetic field for
three and four electrons in a GaAs quantum dot. Each frame
corresponds to a different temperature as indicated.
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states. Far away from a crossover the gap is large so C,.
is small. Similarly, it is small exactly at a crossover be-
cause the gap is then zero. However, on either side of a
crossover the gap is nonzero but not too large. Conse-
quently, C,, is nonzero because neither the probability of
a thermal excitation nor the heat absorbed in one are
vanishingly small. This picture of an oscillatory heat
capacity holds when other spin polarizations are taken
into account. Indeed, for 8) 10 T the ground states are
expected to be fully polarized but at lower fields there is
more structure in C,, when the ground-state spin depends
on 8.

In conclusion, the interaction of electrons in quantum
dots leads to rich structure in their energy spectrum.
However, FIR spectroscopy cannot probe it when the
confining potential is quadratic because the optical exci-
tations are then excitations of the cm and have exactly
the same energies as single-electron excitations. The
structure could be probed by deliberately engineering the
dots so that the cm and relative motions are coupled or
by measuring the thermodynamic properties of the elec-
trons.
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