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Strong-Coupling Field Theory and Soliton Doping in a One-Dimensional Copper-Oxide Model
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A field theory for the strong-coupling limit of a one-dimensional copper-oxide model is obtained from
a weak-coupling point of view. Complementary aspects of strong correlations and band motion are in-

corporated in a natural way. Doping induces soliton or antisoliton charge excitations into a state with

explicitly broken chiral symmetry. The solitons or antisolitons have divergent superconductive pairing
correlation functions and various properties reminiscent of doped holes or electrons in high-temperature
superconductors.
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It has been clear for some time that an improved un-

derstanding of many-body theory in two dimensions is

necessary for the development of a microscopic theory of
high-temperature superconductors. ' This conclusion is

reinforced by an increasing body of data for the normal
state, showing some features that are more easily un-

derstood from a weak-coupling point of view, despite am-

ple evidence of strong correlations (for a review, see
Lee ). It is natural, therefore, to see how this problem is

resolved in one dimension, where the many-body theory
is well understood. A number of papers have been
concerned with one-dimensional analogs of models relat-
ed to high-temperature superconductors. The purpose of
this paper is to obtain a suitable field theory for the
strong-coupling limit of a one-dimensional copper-oxide
model, starting from a weak-coupling point of view, and
to explore the properties of doped holes and electrons.
The theory is very general and applies to a wide variety
of initial Hamiltonians. But it is convenient to work ex-

plicitly with a two-band model, incorporating both

copper and oxygen sites. Hole doping may involve both
bands but electron doping has essentially the same phys-
ics as a single-band Hubbard model. ' Therefore it is

possible to study one- and two-band models on the same
footing and to explore their differences, which have been
the subject of some debate. "'

The physical picture emerges as follows. In undoped
materials (analogous to La2Cu04 and YBaqCu306)
there is an explicitly broken chiral symmetry associated
with the charge-density-wave (CDW) degrees of free-
dom, together with algebraic spin-density-wave (SDW)
correlations. Doping induces (sine-Gordon) soliton or
antisoliton CDW excitations, and a "Fermi surface" fol-
lowing a modified form of Luttinger's theorem (Lee ).
Superconductive pairing-correlation functions for soli-
tons or antisolitons may diverge at low temperatures
even if the initial Hamiltonian has purely repulsive
interactions. The "superconductivity" disappears at
sufficiently high doping when the solitons overlap and
cease to have a distinct identity. The soliton picture sug-
gests explanations for various properties of high-
temperature superconductors, such as the change in sign

of the Hall coeScient on doping, the increased room-
temperature conductivity of highly doped, nonsupercon-
ducting samples, and the different temperature depen-
dences of the spin-relaxation rates of copper and oxygen
nuclei. ' One- and two-band models differ in the num-
ber of spin degrees of freedom.

The Hamiltonian is assumed to be

0 gl —ta„a„~l +H.c.+ 2 e'( —1)"p„
n, cJ

l+ 2 Unpnnpn, —n+ Vpncrpn+ 1,a~ i

where a„and p„=—a„~„are, respectively, the creation
and number operators for a hole with spin ct at site n

This is a one-dimensional version of a model proposed
for the copper-oxide planes of high-temperature super-
conductors if U, Ud at odd sites (copper) and U„U~
at even sites (oxygen). There are Nt, holes and N, sites
with 2Nt, /N, 1+6, where b is the dopant concentration
and b ) 0 for hole doping, b (0 for electron doping. Be-
cause of the c term in Eq. (1), there is a gap in the spec-
trum at k + tr/2d, where d is the Cu-0 lattice spacing.
The lower band has more copper character and the upper
one more oxygen, depending on the value of e. To start
out, the solution of the problem in the continuum and
strong-coupling limits will be described. In each case,
the CDW part of the Hamiltonian will be written in

terms of spinless fermions which are CDW excitations
not electrons. Following Eq. (6), a discussion of the
physical consequences will be given.

The procedure for taking the continuum limit of one-
dimensional models is well known. In that limit, there
is separation of spin and charge in the sense that the
Hamiltonian may be written as a sum of SDW and
CDW parts, H, and H„respectively, and the correlation
functions in space and time are products of SDW and
CDW factors. The Hamiltonian 0, is parametrized by
(g|,8, ) and H, by (g3, 8, ), where gl, g3 are backward-
and umklapp-scattering coupling constants, respectively,
and 8„0, are functions of g~, g3 and forward-scattering
coupling constants. For free fermions with spin, g 1

=g3=0 and 0, =0, 1. Explicit expressions for these
variables may be obtained by taking the naive continuum

1076 1990 The American Physical Society



VOLUME 65, NUMBER 8 PHYSICAL REVIEW LETTERS 20 AUGUsT 1990

limit, but this is inaccurate for strong coupling: A

better procedure is to use numerical methods, general ar-

guments, or known properties of the original system to
identify the exact values. The formulation is quite gen-
eral: All singular-scattering processes near the Fermi
surface are taken into account, and the asymptotic be-

havior of any system is governed by symmetry, the num-

ber of degrees of freedom, and the values of (gl, 8, ) and

(g3, 8, ), regardless of the details of the interactions in

the original Hamiltonian. (It is assumed that the in-

teractions have finite range. ) The correlation functions
are power laws in the temperature T or frequency m,

with critical exponents that are functions of 8, and 8, .
There are separate renormalization-group equations

for H, and H, with lines of fixed points g~ =0 and g3 =0
parametrized by 8, and 8„respectively. s For the
repulsive spin-rotation-invariant interactions of interest
here, (gl, 8, ) scale to the fixed point (0, 1) at which both
are marginal variables. Thus the renormalization group
is sufficient to obtain the asymptotic SDW behavior.
However, in the same region of coupling, the fixed line

g3=0 is unstable, and it is necessary to specify H, .

There are several diff'erent representations, but the most
useful one for present purposes is in terms of spinless fer-
mions:

H, dx iv yl —yjC
8X 8X

+g3(Ãf Yl + Wl Y2) +gpl P2 (2)

1
—40,=27'

1+40,' (3)

where yl(x) and y2(x) are annihilation operators for
right-going and left-going fermions, p;(x) —= y; (x)itl;(x),
v is the Fermi velocity, g& —=kFg&/n, and kF is the Fermi
wave vector of the original holes. The spinless fermions
have Fermi wave vector kF=2kF —n/2d (a Galilean
transformation has been used to shift momenta by
~ n/2d in order to incorporate the momentum taken up
by the lattice). A detailed derivation of Eq. (2) is given
in Ref. 4. The essential steps are (a) introduce a boson
representation of the original fermions, (b) combine the
bosons into SDW and CDW fields in order to separate
the Hamiltonian into H, and H„(c) use a boson repre-
sentation of the spinless-fermion operators y;(x) to ob-
tain Eq. (2). The boson form of H, is a sine-Gordon
Hamiltonian, with the cosine term proportional to g3. In
the fermionic form of H„given in Eq. (2), the y; (x) are
soliton rather than electron creation operators. In other
words they create clumps of charge of finite extent. Evi-
dently, H, could be parametrized by g3/v and g/v, but it
is more useful to work with the explicit expression

+ —, e( —1)"c„c„+Vp„p, + i], (4)

where c„creates a spinless fermion at site n and
p„=c„c„.Here, the exclusion principle enforces the con-
straint that no site is doubly occupied and gives a Fermi
wave vector 2kF. Such a representation of the spatial
motion may be obtained by generalizing arguments pre-
viously used for the single-band Hubbard model. ' Tak-
ing the (naive) continuum limit of H in the usual
way ' gives H, with v =2td sin2kpd, g&

= e/2, and

g =4kF V/tr. Note that the c„refer to CDW excitations
and not electrons. Also, the continuum limit of H is a
special case of H, : In general, the parameters of the
fixed-point Hamiltonian are not so simply related to
those of the original Hamiltonian. The spin degrees of
freedom are equivalent because (i) when U~, Ud ~ the
spin part of the wave function is an eigenstate of the
Heisenberg chain, and (ii) the renormalization-group
equations for the Heisenberg-Ising model' ' have the
same structure as for H,—two variables, both of which
are marginal at the spin-rotation-invariant fixed point.
Here, (i) was obtained by Ogata and Shiba' for the
single-band model Up =Ud, e= V=0 by taking the limit
of the exact Bethe-ansatz solution. But it may also be
proved for the more general model by using second-order
perturbation theory in t: The spin degeneracy is resolved

by superexchange and pair hopping when two holes are
on neighboring sites.

The relationship to the U~, Ud ~ limit may also be
illustrated by comparing correlation functions. For kF'

=0, the charge degrees of freedom are frozen and both
the Heisenberg model ' and the electron gas have
spin-spin correlation functions varying as x for large
x, with logarithmic corrections. ' Furthermore, it is a
general consequence of the weak-coupling theory ' that
the momentum distribution of the original fermions is

given by

ponents. Note that the free-fermion point (g=0) for H,
corresponds to 8, = —,

' .
This general theory will form the basis for the discus-

sion of doping into a half-filled band (k~ =0, g3&0) as a
strong-coupling theory. The essential point is that step
(c) in the derivation is a quantum dual transformation
relating weak-coupling variables (the bosons of the sine-
Gordon theory) to strong-coupling variables (the spinless
fermions). But that step would be unnecessary if gi
were zero since H, in Eq. (2) would be a Luttinger mod-
el corresponding to free bosons.

The identification of H, as a strong-coupling Hamil-
tonian may be demonstrated explicitly in the limit

Up, Ud ~ for which the spatial motion is governed by
the Hamiltonian

ZI t(Cn+lCn+Cnvn+l)

for g/v in terms of 8, which characterizes the critical ex- n(k) = —,
' —constx ~k+. kF ~'sgn(+'k —kF) (s)
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near to the Fermi points k = + kF, where

a=-, (e, +e, '+e, +e, ') —I.
Since 0, =1, it follows quite generally that a =

8 at the
free-fermion point e, = —,

' . From Eqs. (2)-(4), it can be
seen that the U ~ limit of the single-band Hubbard
model is such a point and indeed the value a=

8 has
been obtained from the Bethe-ansatz solution by Hal-
dane (analytically) and Ogata and Shiba ' (numerical-
ly). Other critical exponents may be obtained from
Tables 2 and 3 of Ref. 4. Note that a form of
Luttinger's theorem is satisfied in the sense that the loca-
tion of the singularity in n(k) is determined by the posi-
tion of the Fermi surface for the noninteracting holes.

The continuum and large-U&, Ud theories are comple-
mentary. The former is a general fixed-point theory for
a wide variety of initial Hamiltonians, including those
with extended Coulomb interactions. Correlation func-
tions are easily evaluated, and the crossover from weak
to strong coupling is clear. On the other hand, the
large-U~, Ud theory is easier to derive and gives a lattice
theory which is useful when the shape of the energy
spectrum or the number of degrees of freedom is impor-
tant. However, in order to realize all of the
intermediate-coupling physics, it would be necessary to
generalize the U~, Ud ~ model to allow V(0 since
the corresponding coupling constant g in Eq. (3) is nega-
tive when 8, & &. Note that the t-J model, or the
large-U limit of the single band H-ubbard model (H
with e =0 = V), does not give a faithful realization of the
continuum Hamiltonians H, and H, . In particular, the
chiral-symmetry-breaking term (e) and the (possibly at-
tractive) direct interaction (V) are missing. The conse-
quences will be made clear in the ensuing discussion.

When V=O and there is one hole per unit cell, H de-

scribes noninteracting fermions with a gap for excita-
tions above the ground state. The gap is a consequence
of umklapp scattering (the e term of H ) which drives
an excess of holes on copper sites. Hole or electron dop-
ing produces holes in the oxygen band or holons, ' ' re-
spectively. In the continuum language, 0, describes free
massive fermions —the solitons of the sine-Gordon
theory. The mass is a consequence of the explicitly bro-
ken chiral symmetry (the gi term of 0,). Doping pro-
duces soliton or antisoliton CDW excitations. In either
case, current is a flow of defects and the carrier concen-
tration n, is equal to the dopant concentration B. In this
sense, the CDW degrees of freedom are electron-hole
(i.e., soliton-antisoliton) symmetric in the two-band
model. The spins will be considered later.

The soliton pairing correlation function, generated by
the operator yi yf, may be evaluated by standard tech-
niques. For attractive interactions (e, ) —,

' or V (0)
it diverges as a power of the inverse temperature r ' as
T 0. This is the one-dimensional analog of pairing of
holons' except that the attractive interaction is a prop-
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erty of the renormalized Hamiltonian H, and does not
require extrinsic processes such as tunneling between
chains. ' The soliton pairing operator pity) couples to a

gauge field in exactly the same way as y|tyji (singlet
pairing of holes). This result follows from the boson rep-
resentation ' in which both operators involve the ex-
ponential of I"- dx'II(x'), where II(x) is the momen-
tum conjugate to the Bose field p(x) which, in turn, is

related to the charge density p(x) =n 'i 8&/8x. In the
presence of an electromagnetic field, II becomes II
—

equi/z'i

where A 1 is the space component of the vec-
tor potential. Thus the soliton pairs have charge 2e,
and a Ginzburg-Landau theory of an ordered state
would be very similar to that of a conventional supercon-
ductor. However, it has not yet been shown that such an
ordered state would exist in a full three-dimensional
theory.

The solitons have a finite size determined by the value
of e or g3. Then the entire picture breaks down when the
density of solitons is too high since the size of the solitons
exceeds their average separation and the solitons are not
well defined. In that case, the behavior of the system is

the same as if g3 =0: When 8, & 2, the concept of soli-

ton pairing has no meaning, and all of the holes partici-
pate in the flow of current (n, =1+8). However, at
elevated temperatures, the system may have a higher
conductivity than in the "soliton" region because the
carrier concentration is higher. This behavior is reminsi-
cent of the properties of high-temperature superconduc-
tors. ' Moreover, the spectrum of H has inflections
above and below the Fermi level for a half-filled band, a
signature of the solitons' or antisolitons' losing their
identity. This is what is needed to give a change in sign
of the Hall coefficient as superconductivity disappears at
high doping levels. The soliton picture also suggests an

explanation of the difference between the spin-relaxation
rates measured on copper and oxygen nuclei. ' There
are two contributions, one from the commensurate SDW
regions, the other a Korringa relaxation from the soli-
tons. Oxygen nuclei do not see the former because it is

suppressed by a form factor which vanishes at the SDW
wave vector;' thus they should only show the Korringa
relaxation, as observed. ' On the other hand, the oxygen
nuclei would be affected if the doping simply produced
an incommensurate SDW. Of course, a proper discus-
sion of the experiments requires a consideration of the
two-dimensional version of the model for which the re-
lationship between the charge and spin degrees of free-
dom is not so simple as in one dimension.

The spin degrees of freedom do not appear to be in-
volved in the properties of the solitons but, in fact, they
play a role in the global renormalization from 0 to H, .
From the strong-coupling point of view, the effective in-

teraction g in 0, is kinetic in origin. In the U~, Ud

limit, the zero-point kinetic energy is very high. This is a
collective effect —the high Fermi energy is a conse-
quence of the exclusion principle for spinless fermions.
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When U~, Ud are finite, the zero-point energy is lowered
because excursions onto already occupied sites are al-
lowed. The attractive interaction is a consequence of the
fact that the zero-point energy is lowered even further
when two holes are close together.

Finally, the difference between electron and hole dop-
ing is in the number of spin degrees of freedom. This is
clear from the large-U~, Ud limit for which the number
of spins in the Heisenberg wave function is (I+8)N, /2.
In a single-band model for hole doping' " the number
of spins is (1 —8)N, /2 with 8) 0. The number of spin
degrees of freedom is not reduced by the formation of
singlets involving copper and oxygen spins as suggested
by Zhang and Rice. "
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