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We present a theory of Raman scattering in the Hubbard model. The scattering of light has two con-
tributions. One gives rise to scattering by spin degrees of freedom in the insulating case where the gen-
eral form of the scattering Hamiltonian is derived. The fluctuations of the "chiral" spin operator
ps; (s, xsk) are shown to contribute in the 82g scattering geometry. The other contributes in the doped
case and is shown to probe the fluctuations of the "stress tensor. " This quantity is not conserved, and
hence its fluctuations at small q inherent in optical experiments need not be small, in striking contrast to
density fluctuations in usual metals.

PACS numbers: 71.28.+d, 78.30.-j
Raman scattering (inelastic light scattering) has pro-

vided extremely important quantitative and qualitative
information in high-T, materials, in both the insulating
and doped cases. ' Here we will be concerned with the
question of describing the nonphonon contribution to Ra-
man scattering, within a unified theoretical framework.
A simplifying feature of the Mott-Hubbard system is

that a single effective band, or a few bands, are involved,
with the result that all couplings to the external world

are readily parametrized. For example, the external
electromagnetic field couples to electrons through a
well-defined phase factor in the hopping matrix ele-
ment —the Peierls phase. This serves below as the start-
ing point for a unified description of both the "magnetic
Raman scattering" in the insulating phase and the "elec-
tronic Raman scattering" in the doped, i.e., metallic,
phase of the Mott-Hubbard system. In the former case,
we reexamine the derivation and regime of validity of the
effective Hamiltonian for resonant light scattering. In

the doped case we argue that scattering is dominated by
non-free-electron effects.

We do not intend here to present detailed calculations
in either phase in view of their intractability, but rather
wish to outline the framework in which such calculations
should be undertaken. The present theory of Raman
scattering would apply to high-T, systems, if one accepts
Anderson's assertion that these are Mott-Hubbard sys-
tems. Our conclusions are that this point of view is not
only consistent with the bulk of the data for the insula-
tors, but seems to provide a natural and a testable inter-
pretation of the Raman data in the doped case. For sim-

plicity of presentation we confine ourselves to a one-band
Hubbard model in two dimensions, leaving the generali-
zations to a three-band model for a later publication (our
U below is the kp

—
pd of the latter).

Consider the Hubbard Hamiltonian in the presence of
a weak external transverse electromagnetic field A: H
=H, +HU, where HU Ugn, tn, ~

and

(3)

(5)
and
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H, =Pe(k)c (k)c (k) — P j(k) A( —k)+ g A, ( —k) r, p(k+ k')Ap( —k') . (I)
C k 2 C k, k'

The operators c (k) destroy electrons with spin o and momentum k defined for the square lattice in 2D. The energy is
e(k) = —2t [cos(k„)+cos(k~)], the current operator is

j,(q) =gv, (k)c (k+q/2)c (k —q/2), (2)
k

where v, (k) =8t.'(k)/Bk„and the stress tensor r, p is

r, ,p(q) =g c (k+q/2)c (k —q/2) .
tl'e(k)
k, kp

Finally, A, (q) =e,g(q)(av+a —~), with g(q) =(hc /Vrv~)'i and with a~ destroying photons with polarization e,
momentum q, and energy rvv =c lq l. From this point on we switch to units where t't =c = l.

The Raman-scattering cross section is determined by the transition probability rate R obtained from the golden
rule":

R(q, 0) =2xpexp( pe;)lg(k;)g(kf—)e,'ep&flM'p(q)li&l h(ef —e; —0), (4)
i,f

where co;(f), k;y&, and e,'f denote the energy, momentum, and polarization of the initial (final) states of the photon,
E;(f) refer to the Hubbard eigenstates describing the "matter, " 0 =co; —cd, and q =k; —kf.

The scattering operator has both resonant and nonresonant contributions M(q) =MR(q) +M~(q):
&fl M% p(q) I ~ &

=
&f I r.,p(q) li&



VOLUME 65, NUMBER 8 PHYSICAL REVIEW LETTERS 20 AUGUST 1990

We now proceed to examine the undoped insulating
case corresponding to exactly one electron per site for
large U/t. It is clear that the low-energy Raman
scattering, at least when 0 ~ U, is dominated by the res-
onant terms [Eq. (6)l since the stress tensor does not
have low-energy matrix elements. The Hilbert space
splits into bands labeled by n, the number of doubly oc-
cupied sites, which we denote by ln, a). The lowest Hub-
bard band (LHB) n 0 can be parametrized by the set
of S'(r) eigenvalues specifying a spin configuration
a=(jaj), while the upper Hubbard band (UHB) with
n 1 requires the specification of the doubly occupied
site rd and the hole site rt„ in addition to the spins, so
that l l, a) =c (rd)c (rt, ) l [oj), where l [aj) =g,c l0).
To lowest order in t/U, these are degenerate. The n =0
manifold degeneracy is lifted by the superexchange aris-
ing from second-order hopping "t" matrix elements giv-

ing the Heisenberg model H«=(4t /U)g, „[s, s,+„—
—,
' ]. In contrast, the degeneracy of the n 1 manifold

(UHB) is lifted already at first order in t by the kinetic
energy of the hole and the "double. " To leading order in

t/U, only n 1 UHB states appear as intermediate
states, and Eq. (6) (for k;-kI-0) becomes

(flM, li)- 2 &0, [oIj Ij„(r)I l, a&(l, a Ij„(r')l0, [o;j&
a, r, r'

f i i f
eyeing + epey

e],—e; e],+cd

with the bond current operator j,(r) =it [c (r+ v)
&c(r) —H.c.]. To the zeroth order in t/U, e~ =U, and
hence can be pulled outside the intermediate-state sum-
mation. The sum can be carried out and the resulting
answer for the matrix elements of MR written in terms

(8)

of effective spin operators as in Fleury and Loudon,

HLs =g ( —,
' —s„.s,+„) [A p] [A' p] .

r,p Ni

The argument leading to Eq. (8) is the same as the one
used in deriving the superexchange, with the modifi-
cation that j-A is replaced by H„and the energy
denominators do not contain co; [we drop the second
term of Eq. (6) here and in the rest of the paper ]. The
latter is a crucial difference since the perturbative expan-
sion relies on the smallness of t/(U —ro;) which breaks
down in the resonant regime U-co;. More generally,
the calculation of the scattering matrix element [Eq. (7)]
involves the UHB propagator

Ge (rt„rd, [a'j;rt„rg, [oj )
—= (o'lc„',c„[H,—E] 'c„'„c„,lcr) . (9)

The intermediate-state summation in Eq. (7) can be
written in terms of the off-diagonal elements of Ge
where E U —co, and since holes and doubles form ex-
tended states in the UHB, we expect GE to have a con-
tinuous spectrum with bandwidth of -t. However, be-
cause of the interaction of the carriers with the back-
ground spins, the proper calculation is an intricate
Brinkman-Rice kind of a problem which will be con-
sidered elsewhere. The lowest-order scattering Hamil-
tonian, as in Eq. (8), is clearly the leading term in a mo-
ment expansion (H, E) ' ——Eg -o(E 'H, )
while the general terms of the expansion contain both
nonlocal and multispin exchanges of a rich variety. Here
we present the next few terms in the moment expansion,
which are obtained by combining Eqs. (7) and (9) and
some tedious algebra.

Defining A, ~, „,~ [g(k;)g(kI)——l '[A,'Ap+'A„'A~l, P,
—=g,s, s,+., 6, p „=—g, (s, s„~.)(s,~& s, +„), and 6=t/—
(U —co;), we find that

(flMRli& &fl[0,A„+, y y+OdA„„y y+O, A„+« y „+O,A„y y „]li&,
with the operators

0, =—t/t [N/4 —
—,
' (Px+Py)]+2t& [N/4+&2x++2«+'Px+y++x —y+2(ax, y,x+«+6«, x,x+y ax+«, x,g )],

Od= ta( ,' -4a'-)[P, ,
--P l 2th [P2„-'P2,],-

0,—= —t d, [N+4Px q«+4P« —„],
and

(io)

(12)

00 =8t 6 gi e„„s, (s,+„xs,+„), (i4)
f

where p = ~x, ~y and e„.= —e, „=—e „„.The operato-rs in Eqs. (11)-(14)may be regarded as new terms in the
effective light-scattering Hamiltonian. Several comments are in order. The terms involving 0, and Od appear already
in the earlier work of Fleury and Loudon; however, one sees that [O„H,„]&0,and so the A ~~ scattering does not van-
ish as it would if 0, were truncated at the lowest order. The previously overlooked terms 0, and 0, contribute, respec-
tively, in the A~g, 8p~ and in the 8]g,82g geometries. Their precise contribution is calculable with standard techniques
for the antiferromagnet.

One may note that 0, is odd under time reversal, and the corresponding term only contributes inasmuch as e &e'. It
is precisely the chiral spin operator that has been suggested to have a nonzero ground-state expectation in some recent
theories of high-T, systems. If that were the case, it would contribute to e «(0 =0) as can be seen from the elastic
limit of Eq. (6). In Raman scattering, we have shown that the fluctuations of this operator contribute in the Bq~
geometry.
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(is)
The case of parabolic bands" is obtainable by

specializing to e(k)-k, which by Eq. (3) replaces
r, //(q) by 8, //p(q). In this case, the scattering vanishes
as q 0, the integrated intensity vanishing as q", with
n=l if the long range of the Coulomb interaction is

neglected, and with n=2 otherwise. This is the inescap-
able consequence of particle-number conservation, i.e.,

[p&,H] 0 as q 0. However, for Mott-Hubbard sys-
tems, this suppression does not apply since r„„(q=0)
does not commute with the full Hamiltonian, and can
cause scattering between the eigenstates of H. The
effect of nonparabolicity of the bands [i.e., r„,(q)
Cp(q)] was discussed by Woiff, ' who found within the
random-phase approximation that I„„(q,n ) WO for
0 ~ qvf, the latter constraint being a consequence of the
limited phase space available for scattering the quasipar-
ticle. However, for Mott-Hubbard systems, the scatter-
ing is actually dominated by the incoherent part of the
carrier spectral function which defeats the phase-space
limitation, resulting in the nonvanishing of I,„(q,n),
over a broad range of 0 = t.

We can relate I„„to a "stress susceptibility" by the
fluctuation-dissipation theorem and write I„„(q,n )
=Imp ')(q, n)/[1 —exp( —pn)] and express

z"(q, n) =N 'g y"(k)) "(k')M,
,, (q, n),

k, k'

where the bare vertex y" (k) =cos(k„). The function M
is given as the sum of the "bubble" and the vertex contri-
butions,

M/, /, (q, n ) = 8/, /, A/, (q, n ) +N 'B/, /, (q, n ) .

The term A/, corresponds to the bubble diagram with

fully renormalized propagators and can be formally eval-
uated in terms of the single-particle spectral functions.
The contribution arising from the coherent part of these
vanishes as q 0 at zero temperature. The incoherent
part is, in general, nonzero at all wave vectors but van-

ishes as 0 0 as 0', with y~ 1. The same function

M/, /, determines the density and current susceptibilities
gt/'/(q, n) and gtj/(q, n), which are obtainable from Eq.
(16), by replacing the stress vertex y

'
by unity and the

current vertex v, (k), respectively.
The conservation of particle number leads to the

Ward-Takahashi identities relating the vertex correction
term 8/, /, and the bubble term A/, through (8/, /, (0,
n))/, , /,

= —(A/, (O, n))/„ for all n, whereby Imp (0,(p)

n)=0 V n. The implication is that the Raman cross
section in the doped case, if due to density fluctuations,
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We now turn to the doped case where the nonresonant
terms [Eq. (5)] give nontrivial dominant contributions
since the kinetic energy, or stress tensor, has matrix ele-
ment between states in the LHB, i.e., with low-energy
transfers. ' The simplest case corresponds to the geo-
metry e; =ef =x for which the scattering intensity is pro-
portional to
I (q n) =Zexp( pe ) l&fl rex(q) li) I' s(Ef Ei n) .

i,f

should vanish with q, the photon momentum transfer
which is usually very small compared to, say, the Fermi
momentum. In actual experiments on high-T, materi-
als' the typical q is roughly the inverse skin depth
A., =1000 A. We then expect that for nonparabolic
Mott-Hubbard systems, the resulting integrated intensity
should be larger than that in a typical free-electron met-
al by factors of order (X,/ao), where ap (= 5 A) is a
lattice constant, or typical interparticle spacing, and m is
either 1 or 2.

We are able at present to give only a very crude esti-
mate of the Rarnan intensity. It is readily seen that the
intensity integrated over frequencies reduces to

+0
d n I„„(0,n) =(I,.„„I,.„„P,) (I,.—„„p,)',

where Pa projects out doubly occupied sites, and the
cutoff frequency n, is assumed to be in the range t ~ n
~ U, so that only LHB states can contribute (crudely
n, -insulating optical gap), and should scale like t
times the hole density b. This intensity should be seen in
the B/g and A/~ geometries with —,

' (r, „T- r~ ~) replac-
ing r„„ in Eq. (15). The various moments can be calcu-
lated as higher commutators, and expressed as correla-
tion functions. ' In contrast to the density-fluctuation
picture of Raman scattering, which leads to we11-known
features including a particle-hole continuum with a
well-defined cutoff qvf and a sharp plasma mode arising
from collective density fluctuations, in Mott-Hubbard
systems the intermediate states probed need not neces-
sarily have any sharp structure since the stress tensor is
not expected to create well-defined elementary excita-
tions. Thus we expect a broad continuum with a band-
width of order t, with an "anomalously" large intensity
compared to free-electron metals, scaling like the hole
density near half filling. This description is qualitatively
consistent with the experiments' where the largest en-
ergy transfer is —1 eV.

An interesting cross-check is provided by considering
the optical conductivity Reer„„(0,n) =Imp ~ (0, n)/n.
In the approximation where only the bubble contribu-
tions to Reo are retained, these are essentially identical
since (cos (k„))=1 —(sin (k„)). The optical experi-
ments' on YBaqCu307 do seem to bear out, albeit
crudely, this pseudoidentity,

I, , (0, n) —n/[1 —exp( —/gn)]Rea„(0, n),
for small enough 0, although at higher frequencies there
seem to be significant departures. ' In the limit 0 ~ kT,
the above reduces to I„—kTRea; together with a
temperature-independent I„(0,0), it implies a linear
resistivity, which is a ubiquitous feature in the high-T,
materials.

For this pseudoidentity and also the Ward-Takahashi
identity to hold, we would have to argue that the vertex
corrections are small in the non-s-wave channels of the
function Bk k. Recent work on the Hubbard model'
shows that this scenario is realized in the limit of high
dimensions. We should also stress that these considera-
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tions apply only to small momentum transfers in the
singlet particle-hole channel; the triplet-channel spin sus-

ceptibility for q —[tr, tr] is expected to have substantial
structure in view of the oxygen and copper planar NMR
relaxation rates.

We summarize by returning to recent experiments ' in

the insulating case where it is seen that the integrated in-

tensity in the B[g, 82g, and A ig geometries are all of the
same order of magnitude, and, in fact, as the laser fre-
quency tat is changed, the A &g and Bzg intensities can be
larger than that in 8|s. Within 8|s geometry, a reason-
able understanding of the scattering has been reached by
Singh et al. The fact that the scattering intensity in

Alg and Bzg geometries exceeds that in Bis is not easy to
reconcile with the fact that the second-neighbor ex-
change Jz is smaller than Jt by at least an order of mag-
nitude. Within our framework, however, it is clear that
the ratio of the prefactors of the scattering operators that
contribute to His and Bls [see Eqs. (11) and (14)] is

different from J2/Ji, and, in fact, it involves a different
power of t/(U —toL) when such an expansion is possible.
In general, when U-coL, the forms of the spin operator
that can contribute involve arbitrarily long strings of
spins; the upper-Hubbard-band propagator is transmuted
into the scattering operator. Experiments have been
done with laser frequencies between 2.4 and 2.8 eV,
which corresponds fairly closely to the effective U in the
20 cuprates. Hence we believe that the experiments
are probing the most interesting and difficult region of
Raman scattering in the Mott-Hubbard system.

The most striking prediction of this theory concerns
the q dependence of the inelastic Raman scattering: We
are predicting that the integrated intensity does not van-

ish as q 0, simply because the conservation laws do
not force this vanishing. This prediction should be
amenable to experimental test, and is in our opinion a
crucial test of the applicability of the standard dielectric
function theory of Raman scattering"' to the high-T,
systems. It also follows that the semiconductor n-type
InSb and others having strong nonparabolicity could also
display a nonvanishing intensity as q 0, the effects be-
ing proportional to 1

—zi„and largest when the electron
density is low (i.e., the effective r, ) 3). The other im-

portant result shown here is the fact that the B2g
geometry is particularly favorable for studying quasielas-
tic time-reversal violation, both in the insulating phase
[Eq. (14)] and in the doped phase. It is outside the
scope of this work to give an estimate of the relevant
correlation functions, and we hope that our result stimu-
lates concrete calculations of these that can be tested
against experiment.
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