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Bipolar Ferromagnetic Order in a Cubic System
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Classical theories and their quantum generalizations for the ordered state of a dipolar magnet make
universal predictions for cubic lattices. In particular, fcc dipolar systems are predicted to be ferromag-
nets. We present the first direct test of this prediction, in several of the fcc CsqNaR(NO2)6 rare-earth
salts, and find agreement with theory. Predicted quantum anisotropy due to zero-point motion of the
spins is not observed.

PACS numbers: 75.25.+z, 75.30.Cr, 75.50.Dd

The sort of magnetic order that should occur in a lat-
tice of interacting magnetic dipoles has been studied by a

number of investigators over the past half-century, be-

ginning with the original work of Onsager' and Van
Vleck. The attraction of this problem is that the dipo-
lar Hamiltonian is known exactly, presenting the oppor-
tunity for a critical comparison between theory and ex-
periment. Because of the anisotropy and long-range na-

ture of the dipolar force, most theories limit themselves
to a calculation of the interaction energy of possible or-
dered arrays of dipoles at zero temperature. The best
known of these is the theory of Luttinger and Tisza, 3

which treats the magnetic spins as classical quantities,
and quantum extensions of this theory. Cohen and

Keffer make predictions rather similar to the classical
theory based on a quantum spin-wave approximation
technique. In the general case, the type of magnetic or-
der predicted by these theories depends critically on the
details of the lattice parameters, and the anisotropy of
the magnetic moments, or g tensor.

Universal predictions for magnetic order, independent
of the details of particular systems, are made only for cu-
bic lattices with isotropic magnetic moments. These pre-
dictions may be summarized as follows: Assuming that
a ferromagnetically ordered sample is free to minimize
its energy by breaking into domains, s dipolar lattices
with simple-cubic symmetry will have an antiferromag-
netic ground state, while bcc and fcc lattices will always
be ferromagnets. These results are now over forty years
old. While generally accepted, based on experimental
results from systems of lower than cubic symmetry, none
of these predictions has been tested directly by experi-
ment, owing to the lack of a suitable model system. In
this Letter we present the first experimental test of the
last of these predictions, using the fcc rare-earth salts
Cs2NaR (NO2) 6.

These compounds have lattice symmetry Fm3 (Tt, ),
with perfect tetrahedral TI, symmetry at the rare-earth
site. We were guided to these materials by the con-
straint that, in addition to having cubic symmetry, a
suitable model system must separate the magnetic ions

enough so that their exchange interactions are negligible

compared to the long-range dipole interaction. In these
compounds, the distance between nearest magnetic ions
is about 7.8 A (a=11 A) and the path between them is

of the form R-O-N-Na-N-O-R, so that exchange should
be small. Rare-earth ions are dictated for the same
reason. In cubic transition-metal compounds, such as
the double alums, even those with the weakest interac-
tions and lowest ordering temperatures are found to have
substantial exchange. ' We have synthesized most of
these compounds from Ce through Yb. Powder x-ray-
diffraction spectra taken at 10 K indicate that all
members of the series retain their cubic symmetry
down to that temperature, unlike the related series
Cs2NaRC16. '' Samples are obtained both as fine precip-
itates from solution and also as single crystals grown
from slowly diffusing solutions or in silica gel. ' Single-
crystal sizes ranged up to —1 mm . The shape of the
crystallites is roughly spherical, showing both octahedral
and cubic facets.

The magnetically ordered ground state in these crys-
tals was determined from the dc susceptibility. Dipolar
ferromagnets typically exhibit negligible hysteresis in the
ordered state, and are able to maintain the internal field

H;„t H, —DM equal to zero in the presence of an
external field H„applied parallel to the magnetization
axis, where D is the sample demagnetizing factor. This
yields a constant susceptibility per unit volume g,,

M/H, equal to 1/D below the ordering temperature. '

In the antiferromagnetic case, the susceptibility typically
rises to a maximum in the vicinity of T„ then drops
below that temperature. The maximum is usually well
short of 1/D in magnitude. Samples were cooled inside
the mixing chamber of a dilution refrigerator, in trapped
fields of 0.5 and 0.05 mT. Magnetization was measured
using Auxgate magnetometers ' for polycrystalline sam-
ples, and a SQUID magnetometer for single crystals.
Because of the small crystallite size in the samples,
thermal contact was very good and thermal time con-
stants were short. Because these materials are cubic,
and x, y, and z axes are equivalent under Tl„ their mag-
netic moments are isotropic and polycrystalline suscepti-
bilities are equivalent to those of single-crystal samples.

1064 1990 The American Physical Society



VOLUME 65, NUMBER 8 PHYSICAL REVIEW LETTERS 20 AUGUST 1990

3i4z

0.1 — Gd
V

o

' Dy

Er

cot% 4 a 4 454lc
OVO

0
OO

0

0

0
Og

g 0
bed

hOy
4~gj g0+~a ~,'o+4~y

k g ~j 4 ~
k 4

a ~b

4

The sample temperature was measured using a cerium
magnesium nitrate (CMN) thermometer, also inside the

mixing chamber in close proximity to the samples. This
was calibrated against the superconducting transitions of
Al, Zn, Cd, AuIn2, and Ir.

We have observed magnetic transitions in the Nd, Gd,

Dy, and Er salts of this series. The others either show no

order above -6.5 mK, or have nonmagnetic crystal-field

ground states. dc susceptibility data as a function of
temperature are shown in Fig. 1, for single-crystal sam-

ples of Gd and Dy oriented along (100), and polycrystal-
line samples of Nd and Er. All exhibit a monotonically
increasing susceptibility as the temperature is lowered,

and display a kink in the vicinity of the ordering temper-
ature. Below this temperature the susceptibility is nearly

constant. For single-crystal samples, the value of g, ,

below T, lies within about 3'%%uo of 1/D calculated for a

spherical sample. For the polycrystalline samples, ~here
the demagnetizing field is presumably nonuniform,

g, , (T=0) nevertheless lies within about 20'%%uo of this

value. Single-crystal measurements for a variety of
orientations show, within experimental error, that

Dg, , (T=O) is independent of orientation in the external
field. For the Gd, Dy, and Er compounds, we infer that
the order is ferromagnetic, in agreement with the
theories of Luttinger and Tisza of Cohen and Keffer.
We could not cool the Nd salt far enough below T, to es-

tablish its ordered state with the same certainty, but the
similar magnitude of its maximum susceptibility to those

of the other compounds of this series argues in favor of
ferromagnetism. These results contrast with the antifer-
romagnetic order typically seen in dilute exchange-
coupled materials with fcc symmetry, ' including metal-

lic nuclear systems. '5 They also differ from the nuclear

dipolar order observed in CaF2 and related materials, in

the rotating frame of reference, where the type of order

depends on the crystal's orientation in an external mag-
netic field, as well as the sign of the spin temperature. '

Crystal-field splittings in some of the Cs2NaR(NO2)s
rare-earth salts are rather small, in some cases apparent-

ly of order 1 K. ' Possibly because of this, the suscepti-
bility of Cs2NaDy(NO2)6 does not accurately obey a
simple Curie-Weiss law above T, . For the remaining
three salts which do, an estimate of the strength of the
residual exchange interaction can be obtained from mea-
surements of the Weiss constant well above T, . The
mean-field susceptibility in this region is g=C/(T —6
—8,„), where C is the Curie constant per unit volume,

8,„ is the Weiss constant due to exchange, and 5 is due
to dipolar interactions, and, for single crystals, can be
calculated as '

In this expression p is a constant equal to a dipolar lat-
tice summation and depends upon lattice symmetry. For
cubic lattices it is identically zero. For a spherical sam-

ple of these materials (D =4ir/3), 5 is therefore predict-
ed to be zero. We have measured the susceptibility of
an approximately spherical single-crystal sample of
Cs2NaGd(NO2)6 in SQUID magnetometers from 0.5 to
50 K, where one expects no complication from crystal-
field effects, and obtain 5+8,„equal to —5+ 20 mK.
From this we conclude that ~8,„~ (10 mK in magnitude,
smaller in magnitude than the dipolar energy of interac-
tion (see below) and T, (=45 mK). This conclusion
should apply to the other compounds of the series as
well. A similar analysis of a single-crystal sample of
Cs2NaEr(NO2)6 from 1 to 5 K, and a polycrystalline
sample of Cs2NaNd(NO2)6 over the interval 50
mK ( T ( 1 K, yields 6+8,„=0~ 30 mK (Er) and
—5+'3 mK (Nd), also quite small. These constants, as
well as other relevant data, are listed in Table I. The
magnitude of O,„suggests that ion-ion forces are pri-
marily dipolar, with exchange relatively unimportant.
This conclusion is reinforced by a calculation (below) of
the dipolar energy of ordering, which indicates that the
observed ordering temperatures scale approximately as
the square of the effective magnetic moment, as would
be expected for dipolar interactions.

The crystal-field ground state of the different rare-
earth ions can, in most cases, be determined from the
Curie constant above T, . An ion at a site of TI, symme-
try experiences a crystal-field potential of the form'

o.o~
0.001 0.0 I 0.1

V =84 (04 —504 ) +B6 (06 —2106 ) +B6 (06 —06 ),
T (Kj

FIG. 1. dc susceptibility data as a function of temperature
for single-crystal samples of Cs&NaGd(NO2)6 (1QQ) and

Cs2NaDy(NO&)6 (1QQ), and polycrystalline samples of
CsqNaNd(NO2)6 and Cs2NaEr(NOi)6. All exhibit a kink

below which z is approximately constant and very close to 1/D

(sphere), indicating ferromagnetic order.

where the B„are constants and the O„are Stevens
operator equivalents. ' Kramers ions (including all
those studied here) have ground multiplets split by this
interaction into three types of doublets, E, Fi, and F2,
the latter two degenerate Kramers conjugates derived
from the cubic I 8 quartet. For Nd + in this structure,
the susceptibility is fitted very closely by that predicted
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TABLE 1. Measured values of the Weiss constant (6+0,„), inferred values of 0,„, critical
temperatures inferred from the susceptibility, classical ferromagnetic ordering energies, and

crystal-field ionic ground states for four Cs2NaR(NO2)6 rare-earth salts.

Material A+ 0,„(mK) 0., (mK) T, (mK) E~ (mK) Probable ion ground state

Cs2NaDy(NO2) 6

Cs2NaEr(NO2) 6

CS2NaGd (NO2) 6

CS2NaNd(NO2) 6

0+ 30
—5+ 20
-5~3

0+ 30
—5+ 20

60+ 10
40+ 5
45+ 5

6.5+ 1

—169
—124

—6.7

FI,F2
FI,F2

E
E

for the tetrahedral doublet E, with a unique g factor of
3 For Er +, the Curie constant per mole is equal to

approximately 6.0 cm3K/mol; for Dy3+, approximately
8.2 cm K/mol. This, and preliminary EPR spectra, are
consistent with ground states consisting of the two de-

generate doublets Fi,F2. ' For Gd +, the crystal-field
splittings are expected to be quite small, approximately
the same magnitude as the dipolar interaction energy, so
the crystal-field ground state cannot be inferred from the
susceptibility alone. Based upon crystal-field parameters
of Gd + in other sites of cubic symmetry, the most
likely ground state is a doublet E composed largely of
the cubic E i (I 6), with a g factor near —", . '

Regardless of the identities of the ions' crystal-field
ground states, one can, in principle, calculate the fer-
romagnetic energy of ordering in the Luttinger-Tisza
theory. Assuming the system is free to minimize its ener-

gy by breaking into domains, the energy per spin is

EF = —
—,
' (-', xM)(p, rr) = —-', zp,'a/a',

where p,a is the effective moment per ion and a is the
lattice constant. For doublet ground states we obtain p, ff

from the molar Curie constant in the mean-field limit,

&moi =Nz petr/ka. For Fi, Fq we estimate p, a from

the corresponding octahedral case (86 =0). ' This
yields ground-state energies E /kyar of approximately
—169 mK for CszNaDy(NO2)&, —124 mK for
Cs2NaEr(NOq)s, and —6.7 mK for Cs2NaNd(NO2)6.
Quantum theories of the ordering energy change these
values by only a few percent. The magnitude of E in

these salts follows the same sequence as the ordering
temperatures, which are approximately 60 mK (Dy), 40
mK (Er), and 6.5 mK (Nd), respectively. Mean-field
critical temperatures can be calculated from the relation

T, =C(p+4m/3), assuming purely dipolar interactions.
They are roughly twice those observed.

In the case of Cs2NaGd(NO2)s, p, a is not known, and

all that can be said with certainty is that the magnitude
of E /ka cannot exceed the free-ion value of —188 mK.
Since the crystal-field splittings in the case of Gd + are
comparable in magnitude with this range, one cannot
conclude that magnetic order takes place in the ion's

ground state only. If it does, and if the ground doublet is

characterized by g= —", , then E /k8= —21 mK. The
magnitude of the ordering temperature, -45 rnK, in

conjunction with the results for the other ferromagnetic

salts in this series, suggests that magnetic order probably
does not occur solely in the Gd + ground state. This is

different from the case of Gd ethyl sulfate, another dipo-
lar Gd system, where the properties of magnetic order
can be explained by the ion's ground state alone. ~2

The quantum spin-wave theory of Cohen and Keffer
predicts that the ferromagnetically ordered state should

display anisotropy. Classically, there exists no anisotro-

py energy for a cubic crystal; in a quantum theory, the
spin does not commute with the dipolar Hamiltonian,
and the moments display zero-point motion which

prevents complete alignment. Anisotropy results from
the dipolar interaction carried to the second order. The
anisotropy energy is given by

8 =(M /S)[K|(ala +a|a3+a a3)+K2ala2a3]
where a; are direction cosines, S is spin, and the aniso-

tropy constants are calculated to be Kl = —0.0235,
K2= —0.3966 for fcc. The anisotropy energy is mini-

mized along (111). The effects of anisotropy should be
observable below T, for internal fields H; (8/M=0. 1

mT. Above T„we calculate the expected anisotropy to
be negligible, regardless of field. Thus, in our measure-
ments anisotropy should not be visible above T„but for
sufficiently small fields should set in at or below T„pro-
ducing a drop in the apparent susceptibility. At T=O,
the demagnetization-limited susceptibility should be re-
duced from 1/D by a factor of cos 8 for a single crystal,
where 8 is the angle between Ho and the closest anisotro-

py axis. For a powder sample, g(0) will be reduced by
(cos 8) = —,

' +4/3z =0.7577, if the anisotropy axis is

(111). We do not observe this reduction in either case,
for external fields as small as 0.05 mT, temperatures as
low as 0.1T„and single crystals oriented with Ho paral-
lel to (100), where the effect should be maximal
(cos 8= —,

' ). At temperatures this low, where one ex-

pects M(T)/M(0) to exceed 0.95, both classical and

quantum treatments predict anisotropy constants at least
60% of their maximum values at T =0. In the related

compound Cs2NaGdC16, where anisotropy is introduced

by a slight lattice distortion, we have observed precisely
this effect. We conclude that either smaller applied
fields are necessary to observe the quantum anisotropy,
or, for unknown reasons, it is not present.

A well-known group-theoretical result states that sim-

ple ferromagnetism is not possible in a strictly cubic lat-

1066



VOLUME 65, NUMBER 8 PHYSICAL REVIEW LETTERS 20 AUGUST 1990

tice. In exchange-coupled cubic ferromagnets, such as
iron, this inconsistency is resolved by ascribing a small
lattice distortion due to magnetostriction in the ordered
state. If this explanation is also correct for dipolar fer-
romagnets, order will never be truly isotropic, because
the classical theory predicts isotropic ferromagnetism
only in the perfectly cubic case. For locally isotropic
moments, an arbitrarily small distortion along one of the
cubic axes results in either axial ferromagnetism, for an
axial compression, or planar ferromagnetism for an

elongation. The magnetostriction is estimated to be of
order icM —10 in these materials, where ic is the
compressibility. Because it is so small, a classical calcu-
lation indicates that magnetostriction will lead to observ-
able anisotropy only for internal fields 0;(10 mT,
well below the limits of our observations.

!n conclusion, we have confirmed long-standing pre-
dictions of ferromagnetic order in fcc dipolar systems

by classical and quantum theories. These predictions

appear to hold for four members of the series
CszNaR(NOz)6. The absence of quantum anisotropy in

the ordered state remains to be explained.
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