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Effect of Finite Hole Mass on Edge Singularities in Optical Spectra
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A theory of optical transitions from a valence state to the conduction band taking into account the
dynamical response of the Fermi sea is given using the functional-integral method. The method yields
an approximation for the effects of the finite hole mass and finite temperature on the Mahan edge singu-
larities. Magneto-optical spectra are calculated for n-doped quantum wells, which explain the range of
observed behavior corresponding to finite-to-infinite hole mass at various temperatures.
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In transitions between valence and conduction bands
in a metal or doped semiconductor, the dynamical re-
sponse of the Fermi sea to the presence of the valence
hole gives rise to a high density of states of conduction-
band electron-hole pairs near the Fermi level, which
manifest their presence as a singularity in the optical
spectrum at the Fermi edge, if the valence hole is
infinitely heavy.'! Finite temperature, in smearing out
the Fermi distribution, dampens the edge singularity.?
The finite valence hole mass which has a similar effect is,
however, difficult to treat theoretically and so the theo-
ries have been qualitative,>* or in the boson approxima-
tion.> A theory of the optical spectra which treats the
dynamical response of the Fermi sea taking into account
the finite hole mass and finite-temperature effects is both
a theoretical challenge and currently of great interest in
view of recent experiments on the optical spectra in n-
doped semiconductor quantum wells. The behavior of
the spectra ranges widely. In both InGaAs and GaAs
quantum wells, some samples®~® show the edge singulari-
ty behavior in both absorption and luminescence while
other samples show the singularity in the absorption
spectra”® but not in the luminescence spectra.®'”
Theories”!! which use only the exciton channel to ex-
plain the edge singularities in the spectra fail to account
for the delicate balance between the ladder diagrams
(the electron-hole attraction) and the crossing diagrams
(the valence hole exciting the conduction electron-hole
pairs) and for the competition between the Mahan exci-
ton effect and the orthogonal catastrophe.'

We present a theory in which the valence-band disper-
sion is present ab initio. To include the initial- (or
final-) state effect in emission (or absorption) of the Fer-
mi sea reacting to the presence to the mobile valence
hole, we use the functional-integral method of coherent
fermion states.'? The temperature is taken into account
in the ensemble average. In analogy with the polaron
theory, the degrees of freedom of the conduction Fermi
sea and those of the valence hole can be treated separate-
ly without, however, making boson approximations for
the former. The valence hole propagation in an arbitrary
coherent state of the conduction Fermi sea is solved by a

cumulant expansion in the electron-hole interaction to
first order. The conduction-band degrees of freedom are
then integrated in the presence of the dynamic potential
due to the hole. Explicit expressions for the optical spec-
tra are shown to reduce correctly to the exact solution '
in the infinite-hole-mass limit. Our theory is used to
compute the optical spectra of quantum wells in strong
normal magnetic fields. The calculated dependence of
the emission and absorption spectra on the hole mass and
on temperature is compared with experiment, giving a
theoretical underpinning to the understanding of the
range of observed behavior described above.

The Hamiltonian is taken to include a conduction
band of electrons with energy &5 and chemical potential
u¢ and a valence hole band with energy dispersion &!.
Only the interband Coulomb interaction VZ£' is taken
into account.! Electron interaction within the conduc-
tion band is neglected. In the states considered, there is
either zero or one valence hole. We consider first the
emission spectrum, given in terms of the conduction-
electron-valence hole pair-correlation function 7§ (7).
For emission, the ensemble average is over the initial
states with one valence hole and a sea of conduction elec-
trons.

As an illustration of the method, we first evaluate the
partition function, which may be written in the func-
tional-integral form as'?

z=[DEpe)e5Z4(E0 ) (1)

where the action of the conduction electrons is given by
e (° 9 e
se=J, d1{§§;¥5p+2p:(ap—pg)§:§p], @)

B is the reciprocal temperature, and the Grassmann vari-
ables £, are the coherent-state eigenvalues of the con-
duction-electron annihilation operators. The functional
integration over &, is separated from the integration over
the valence hole Grassmann variables n, contained in
Zy, the effective hole partition function for a given
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conduction-electron coherent state, given by

Zy(&5,8p) =Z,fnd7h7.1 dng,1dng2dng 2exp [ =23 anga+ng2mg.2) ] Ng.1ng.2
q9 q9 q

xﬁ':qz".@[n: nglexp [}: X (B)n, (B) —sh] , 3)
: q
where the valence hole action is given by
f dr{

with the effective potential

Ugg (1) =2 VERES (1)E, (1) . (5)
24

g a—”q +54774 '74] _EUW'(T)”; nq'} ) 4)

In the hole partition function, Eq. (3), the first integral contains the projection operators of the form
fndn; dnpexp[—zfl;np]nq ©)
p P

which reduce the coherent valence hole states at the terminal points of the path integral to states with a single hole.

Since the hole action in Eq. (4) is quadratic in the hole Grassmann variables, the functional integral for the hole par-
tition function Z, may be evaluated as

Zy(&y,E,) =TrlK"(B,0)] (7
in terms of the hole propagator Ké'q'(r, '), defined by the matrix equation
L KHr,) =[-EH+U@IK G, 1), 8)

with the boundary condition of K*(z,7) equal to the unit matrix. The matrix E® is a diagonal matrix of hole energies.
The cumulant expansion to first order in U yields

e 6 ’)exp[f dr' qu(r)] q9=q,

d - -t ’ —eht' '
egqt[CXP[f, dv'e (e Eqr]_l}’ 979

The justification for this approximation is in reproduc- |
ing the correct infinite-hole-mass limit (see below). The hole correlation
hole partition function Z,, and, hence, the total partition . .
function Z, is a Gaussian form in the electron variables ”g"‘.’p'(f)"f@(é;fp)e Ve (D)Ey KL, (BT . (1D
&,. Thus, Z may be evaluated to be

Kl (B, 1) = 9

Further integration over the electron variable yields an
expression in terms of the matrix K¢, which is the elec-

—geh —8l&(q) — u® . .
Z=Ye PilIl1+e Pl&@ 1] (10) tron propagator defined by the matrix equation
q P
B ge (r,r)=[—E 4V, (DK, (7)),  (12)
where £,(q) is the electron eigenenergy in the presence ] ot
of the potential V£, In later computation, we assume with ‘
for simplicity that the potential is independent of g, [E1PP =(ef —pu®)6pp , (13)
which does not change the essential features of the spec- [qu'(r)]””'=e —ehip(1 =550 — 1t V‘%"'e _G:,. (12)
tra.
Using the same procedure of integrating over the hole The initial condition is the same as K *.

variables first, we obtain the expression for the electron- | The emission spectrum is given by the Fourier trans-

form with respect to the imaginary time of

E(@) =X (M2My/Z) e 6,5+ (1= 8,00 e detll+e “E7KE, (B,7)]
Pq
x X [Kg, (8,017 {[1+e "B K5, (8,7)] "1}, (15)
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where M, is the band-to-band transition-matrix element. Similarly, the absorption is given by

A7) =§,(M,§';,qu/2)e “% detlI+e "B IKe (1,0)]

x 3 (K5, (7,017 {[I+e "EC~IKe (£,0)] 71} 79.

The finite-mass case has been reduced to the single-
particle problem of calculating the electron propagator
K7, in the time-dependent V(7)) as a function of the
hole state. Note that the off-diagonal elements of
V,¢'(7) include the recoil process in which the hole in the
q' state is scattered to the g state by the electron-hole in-
teraction. In emission, the hole distribution exp(—¢/B)
effectively decreases the transition matrix in the diagonal
terms and the electron-hole interaction in the off-diag-
onal term in Eq. (15). The absorption spectrum is in-
dependent of the hole distribution since the initial state
has no hole. When the hole mass is infinite, Vg4'(7) be-
comes independent of time. The hole, when it is present,

(16)

I

J

V"I'nl"‘z’nZ

nymyngmy = Vole (nymue (namduy (n3m3)uy (n4m3)5m,m25m3m,, s

with the cutoff function u;(nm)=6(m.—m). The ma-
trix equations for the propagators are then solved with
six Landau levels in each of the two subbands.

Figure 1 shows the calculated emission and absorption
spectra as functions of the temperature 7, the hole mass
my, and the strength of the electron-hole interaction V.
The cutoff m, is determined by fitting the emission spec-
trum calculated for the infinite hole mass with the model
interaction ¥ =0.3 to the corresponding spectrum calcu-
lated using the true Coulomb potential for the electron-
hole interaction. Energy and mass are measured in units
of the electron cyclotron energy and the free-electron
mass, respectively. The parameters in the calculation
are m, =3, B=S5 T, with the Fermi energy lying between
the third and fourth electron Landau levels. The elec-
tron mass m. is 0.067 times the free mass. The line
spectra are broadened by the introduction of a damping
coefficient & in the frequency w —i§, with §=0.2. The
ratio of the peak intensities is unchanged by the intro-
duction of 6.

In Fig. 1(a), the increase of peak strength towards the
Fermi energy in both emission and absorption for infinite
hole mass at the lowest temperature corresponds to the
edge singularity at zero magnetic field. The emission
spectrum has the same form as the observed magneto-
luminescence spectrum for the InGaAs quantum well, '3
in agreement with the suggestion of optical transition to
a localized hole. As temperature increases, the peak
strength is moved away from the Fermi level in both
directions, blurring the edge singularity. The trend is in
agreement with the zero-field case.? Figure 1(b) shows
that as the hole mass is lowered, while the absorption
spectrum moves the intensity gradually from the Fermi
level, the strength near the Fermi level in the emission
spectrum is drastically reduced. The change of the emis-
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provides a constant potential for the electrons. In the
limit of infinite hole mass and zero temperature, our for-
mulas for emission and absorption reduce to those in
Ref. 13.

The theory of spectra is applied to an n-doped quan-
tum well in a magnetic field B normal to the interface
plane. One conduction and one valence subband are tak-
en with parabolic dispersion and a state in a Landau lev-
el is characterized by the Landau-level number n and an-
gular momentum m about the magnetic-field axis,'* in
place of p or q. The electron-hole interaction is approxi-
mated by a separable potential

an
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FIG. 1. Emission and absorption spectra (a) for various

temperatures with ¥o=0.1 (in units of the cyclotron energy),
my =o0; (b) for three values of the hole mass with Vo =0.1,
T =10 K; (c) for two values of Vo with m, =o0, T=10 K. The
zero energy is at the Fermi energy.
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sion spectrum is brought about by two effects of the
finite valence-subband dispersion: the hole recoil and the
temperature distribution of the initial hole state. The
latter effect is inoperative in absorption. The low hole-
mass emission spectrum has the same form as the ob-
served one in the GaAs quantum well by Smith ez al.,'®
suggesting the removal of the edge singularity by the
finite valence-subband dispersion. The less drastic
change in absorption may explain why vestiges of the
edge singularity are observed in absorption.”® The
GaAs® and InGaAs® quantum wells in which edge
singularities are seen in both emission and absorption are
thought to have localized hole levels. The evidence is in
the width of their emission spectrum being a little less
than the Fermi energy in the conduction subband
whereas in the samples where the emission spectra are
more indicative of finite-hole-mass effects the emission
bandwidth is the sum of the conduction- and valence-
subband energies at the Fermi vector.®!°

Figure 1(c) shows that when the interaction strength
is increased the edge singularity becomes stronger and
shakeup peaks appear in the emission spectrum below
the band edge. The shakeup processes involve final
states with electron-hole pairs in the conduction band.

We have shown how the modern functional-integral
method may be straightforwardly used to include the
finite hole band dispersion in the theory of dynamical
response to the Fermi sea to optical transitions. Our cal-
culated magneto-optic spectra demonstrate the change of
the spectra due to the finite hole mass, more drastically
in the emission than in the absorption spectrum. From
these results, we give an explanation of the diverse be-
havior observed in the quantum wells. Our calculations
may be refined for low magnetic fields.
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