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EH'ect of Finite Hole Mass on Edge Singularities in Optical Spectra
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A theory of optical transitions from a valence state to the conduction band taking into account the
dynamical response of the Fermi sea is given using the functional-integral method. The method yields
an approximation for the effects of the finite hole mass and finite temperature on the Mahan edge singu-

larities. Magneto-optical spectra are calculated for n-doped quantum wells, which explain the range of
observed behavior corresponding to finite-to-infinite hole mass at various temperatures.

PACS numbers: 78.70.Dm, 78.65.—s, 78.70.En

In transitions between valence and conduction bands
in a metal or doped semiconductor, the dynamical re-
sponse of the Fermi sea to the presence of the valence
hole gives rise to a high density of states of conduction-
band electron-hole pairs near the Fermi level, which

manifest their presence as a singularity in the optical
spectrum at the Fermi edge, if the valence hole is

infinitely heavy. Finite temperature, in smearing out
the Fermi distribution, dampens the edge singularity. 2

The finite valence hole mass which has a similar eff'ect is,
however, diScult to treat theoretically and so the theo-
ries have been qualitative, ' or in the boson approxima-
tion. A theory of the optical spectra which treats the
dynamical response of the Fermi sea taking into account
the finite hole mass and finite-temperature effects is both
a theoretical challenge and currently of great interest in

view of recent experiments on the optical spectra in n-

doped semiconductor quantum wells. The behavior of
the spectra ranges widely. In both InGaAs and GaAs
quantum wells, some samples show the edge singulari-

ty behavior in both absorption and luminescence while

other samples show the singularity in the absorption
spectra ' but not in the luminescence spectra. '
Theories '' which use only the exciton channel to ex-
plain the edge singularities in the spectra fail to account
for the delicate balance between the ladder diagrams
(the electron-hole attraction) and the crossing diagrams
(the valence hole exciting the conduction electron-hole
pairs) and for the competition between the Mahan exci-
ton effect and the orthogonal catastrophe. '

We present a theory in which the valence-band disper-
sion is present ab initio To include th. e initial- (or
final-) state effect in emission (or absorption) of the Fer-
mi sea reacting to the presence to the mobile valence
hole, we use the functional-integral method of coherent
fermion states. ' The temperature is taken into account
in the ensemble average. En analogy with the polaron
theory, the degrees of freedom of the conduction Fermi
sea and those of the valence hole can be treated separate-
ly without, however, making boson approximations for
the former. The valence hole propagation in an arbitrary
coherent state of the conduction Fermi sea is solved by a

Z = $((p &p)e 'Zt, (&p, &p),

where the action of the conduction electrons is given by

~p 85'=J dr ggp gp+g(e~ —p, )(pg~ ~, (2)

P is the reciprocal temperature, and the Grassmann vari-
ables g~ are the coherent-state eigenvalues of the con-
duction-electron annihilation operators. The functional
integration over (p is separated from the integration over
the valence hole Grassmann variables gq contained in

Zq, the eA'ective hole partition function for a given

cumulant expansion in the electron-hole interaction to
first order. The conduction-band degrees of freedom are
then integrated in the presence of the dynamic potential
due to the hole. Explicit expressions for the optical spec-
tra are shown to reduce correctly to the exact solution '

in the infinite-hole-mass limit. Our theory is used to
compute the optical spectra of quantum wells in strong
normal magnetic fields. The calculated dependence of
the emission and absorption spectra on the hole mass and
on temperature is compared with experiment, giving a
theoretical underpinning to the understanding of the
range of observed behavior described above.

The Hamiltonian is taken to include a conduction
band of electrons with energy e~ and chemical potential
p' and a valence hole band with energy dispersion ev".

Only the interband Coulomb interaction Vg is taken
into account. Electron interaction within the conduc-
tion band is neglected. In the states considered, there is

either zero or one valence hole. We consider first the
emission spectrum, given in terms of the conduction-

I

electron-valence hole pair-correlation function trg;Pv (r).
For emission, the ensemble average is over the initial
states with one valence hole and a sea of conduction elec-
trons.

As an illustration of the method, we first evaluate the
partition function, which may be written in the func-
tional-integral form as '
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conduction-electron coherent state, given by

Zh (gp, (p) =g II drlq ( dgq ( drlq 2drlq 2exP g()lq ( Tlq i + rlq 2rlq 2) gq' ( gq' 2
q' q q

"$[)iq qq]exp grlq (P)rlq(P) —S"
q, 2 , q

where the valence hole action is given by

d&' Z )iq rlq+~q)iq riq ZUqq'(r)rlq iq' '

(3)

(4)

with the effective potential

Uqq(r) =g VqPqP(p (r)(p (r) .
PP

In the hole partition function, Eq. (3), the first integral contains the projection operators of the form

+drip dip exp g rip rip rlq (6)
P P

which reduce the coherent valence hole states at the terminal points of the path integral to states with a single hole.
Since the hole action in Eq. (4) is quadratic in the hole Grassmann variables, the functional integral for the hole par-

tition function Z), may be evaluated as

Zl, (gp, gp) -Tr[K"(P, O))

in terms of the hole propagator Kqq (r, r'), defined by the matrix equation

(7)

K"(r, r') = [—E'+ U(r) )K"(r, r'),

with the boundary condition of K "(r,r) equal to the unit matrix. The matrix E is a diagonal matrix of hole energies.
The cumulant expansion to first order in U yields

e " '
exp dr'Uqq(r'), q =q',

fO h h

The justification for this approximation is in reproduc-

ing the correct infinite-hole-mass limit (see below). The
hole partition function Z)„and, hence, the total partition
function Z, is a Gaussian form in the electron variables

(p. Thus, Z may be evaluated to be

—p;"~ [
—pi;( ) — ]]

q P
(io)

where ep(q) is the electron eigenenergy in the presence

of the potential VqPqP. In later computation, we assume

for simplicity that the potential is independent of q,
which does not change the essential features of the spec-

tra.
Using the same procedure of integrating over the hole

variables first, we obtain the expression for the electron-

with

K;, (..') -[-E +V„(.)]K;,(&,&),t

[E'] ' =(e' —p')8

[y ( ) ]PP' 8& (P(1 b&&') Tl VPP c& T

qq T =e '
qq'e

(i2)

The initial condition is the same as K".
The emission spectrum is given by the Fourier trans-

form with respect to the imaginary time of

aq q (r) -„&(&,'&, )e 'g,*-(.)g, (0)rC,",(p, &) . (»)
Further integration over the electron variable yields an

expression in terms of the matrix Kqq which is the elec-
tron propagator defined by the matrix equation

E(r) =g(Mpphfqq/Z) [e ' bpq+ (I —6'pq) je"'det[I e+'Kpq(P, r)]
pq

x g [K' (P .)]"[[I+e 'K' (P r)]
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and-to-bandis t" "
E &p —.&K (r, 0)~

—"d t[I+e~(.) =~(
pq

(16)

M~~Mqq
e Z)e

j
—

&} rqF (p T)~e (r 0)„(,0)~'"t~ +'x &w'
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sion spectrum is brought about by two effects of the
finite valence-subband dispersion: the hole recoil and the
temperature distribution of the initial hole state. The
latter effect is inoperative in absorption. The low hole-
mass emission spectrum has the same form as the ob-
served one in the GaAs quantum well by Smith et al. ,

'

suggesting the removal of the edge singularity by the
finite valence-subband dispersion. The less drastic
change in absorption may explain why vestiges of the
edge singularity are observed in absorption. The
GaAs and InGaAs quantum wells in which edge
singularities are seen in both emission and absorption are
thought to have localized hole levels. The evidence is in

the width of their emission spectrum being a little less
than the Fermi energy in the conduction subband
whereas in the samples where the emission spectra are
more indicative of finite-hole-mass effects the emission
bandwidth is the sum of the conduction- and valence-
subband energies at the Fermi vector. '

Figure 1(c) shows that when the interaction strength
is increased the edge singularity becomes stronger and
shakeup peaks appear in the emission spectrum below
the band edge. The shakeup processes involve final
states with electron-hole pairs in the conduction band.

We have shown how the modern functional-integral
method may be straightforwardly used to include the
finite hole band dispersion in the theory of dynamical
response to the Fermi sea to optical transitions. Our cal-
culated magneto-optic spectra demonstrate the change of
the spectra due to the finite hole mass, more drastically
in the emission than in the absorption spectrum. From
these results, we give an explanation of the diverse be-
havior observed in the quantum wells. Our calculations
may be refined for low magnetic fields.
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