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It is argued that the threshold transition that occurs in the phase-deformation model of charge-
density-wave systems in an applied electric field is destroyed in all dimensions by phase slips (amplitude
fluctuations). The one-dimensional case is demonstrated using an exactly soluble model.
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Studying the dynamics of sliding charge-density waves
(CDW’s) yields insight into the competition between
randomness and interactions. CDW’s are characterized
by an order parameter with an amplitude and a phase.
Some CDW materials display a nonlinear current-
voltage characteristic with a threshold voltage that is
small compared to typical electronic energies, implying
that the impurity pinning strength is much smaller than
the CDW stiffness.! Since long-wavelength distortions
of the phase can cost arbitrarily little energy, whereas
amplitude fluctuations must cost an energy of the same
order as the gap energy, many investigators have studied
the Fukuyama-Lee-Rice (FLR) model, which has only
phase degrees of freedom.?

The transition between the pinned and moving states
of the FLR phase distortion model when an external
force F is applied at zero temperature is a dynamic criti-
cal phenomenon.?® The velocity v in the FLR model has
the same time-averaged value everywhere. The transi-
tion can be characterized using v as an order parameter;
v is strictly zero when F is below the threshold field Fr
and obeys v~(F—Fr)¢ for FXFr, where { is a
dimension-dependent critical exponent. A correlation
length that diverges at threshold can be defined.

However, we show here that this transition is not phys-
ically relevant, since real CDW’s at threshold cannot be
described using phase fluctuations only. For any finite
pinning strength, the threshold state of the FLR model
has infinite local energy density and hence is unstable to
the formation of regions with phase slip. The phase slips
lead to a spatially nonuniform time-averaged velocity
and destroy the critical behavior. This result implies
that the depinning transition is always either discontinu-
ous or rounded in the infinite-volume limit for a physical-
ly relevant randomly pinned model of CDW’s. The
rounding is very small in more than two dimensions, but
in one and two dimensions this effect leads to total de-
struction of the critical behavior. Our arguments are
general and can be applied to many driven systems in
which interactions and randomness compete, such as flux
motion in type-II superconductors.

We show the relevance of phase slip by examining a
model where amplitude fluctuations are not allowed and
showing that the local energy density is unbounded. The
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argument is presented heuristically; details will be
presented elsewhere.® Although the scaling arguments
employed here do not depend on the details of the sys-
tem, for definiteness we consider a system described by
the coupled equations of motion>

5c,-=k62(x,-+5—x;)-Visin(xi—ﬂ,~)+F. (1)
,nn

These equations describe a d-dimensional system of over-
damped particles, each connected by springs obeying
Hooke’s law to its nearest neighbors, in the presence of a
random pinning force described by ¥; and B;. Every
spring has a spring constant of k. The variables x; are
the positions of the particles, where the motion is con-
strained to be along the direction of the force F, which is
independent of both position and time. The absence of
phase slips is enforced by the fact that the spring force
k(x;;+5—x;) is linear in the particle separation for all
Ox; s=x;+s— Xx;. Physically, one expects that the spring
force has a maximum value, so that for large enough
8x; 5 the spring breaks and Eq. (1) is no longer valid.
Thus, for the model to apply, every nearest-neighbor pair
must have bounded separation 6x;s<Spax for some
finite Smax, SO that the local elastic energy density is less
than +kS2... We show that this condition cannot be
satisfied everywhere for the model described by Eq. (1).

The argument relies on the fact that the surface-to-
volume ratio of a region of size L vanishes as L gets
large.® Different regions might want to move at different
velocities but are prevented from doing so by the spring
forces. However, the regions communicate via springs
that are only on the boundaries of the regions, while fluc-
tuations in the impurity concentration and hence local
threshold field are volume effects. Therefore, the force
exerted by each spring on the boundaries of the regions
become arbitrarily large as L becomes large.

More specifically, consider a system of infinite size in
the presence of a force F just below its threshold for dc
motion, Fr(e). Inside this system, select a compact re-
gion with linear dimension L, which has threshold field
Fr(L).” If Fr(L) is less than Fr(e), then there must
be a force [Fr(eo) —Fr(L)IL? exerted on the region
through its boundary by the surrounding regions to keep
it from moving. This force can only come from the
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springs at the boundary. However, since the number of
springs at the boundary scales only as L¢ ™!, at least one
spring must be stretched by an amount that scales as L.
The largest strain at the boundary (denoted here as
X max) is at least

8xmax~LAFr (L), 2

where AF7(L) =Fr(e0) —Fr(L). Equation (2) makes it
obvious that a given (bounded) fluctuation in Fr(L)
leads to large strains when L is large.

There are two types of fluctuations that must be con-
sidered; the first is exponentially rare in L and leads to
AFr(L) of order Fr(eo). These rare fluctuations lead to
a very small rounding of the threshold transition for all
d, and are discussed in more detail below. The second is
a typical VN-type fluctuation that leads to AFr(L)
~L %2 The strain induced by these typical fluctua-
tions is at least LAF7(L) ~L"'~4/2. This strain becomes
larger than any finite Smax as L — o for d <2.

In one dimension this heuristic argument implies
OXmax—~L /2 This result can be displayed analytically if
one examines a simpler model first introduced by Miha-
ly, Crommie, and Gruner.® In this model the nonlinear
pinning potential is replaced by a random static friction.
The critical behavior (i.e., the v vs F relation) differs
from that for Eq. (1), but the physics of the competition
between randomness and interactions is retained. The
equations of motion are

fj=k(Xj+1 -'2xj+xj—1)+F—d< s
xj=f; if f;>0,

x,=f,+2d, if fj< —2dj,

(3)

x;=0 otherwise .

The x; are the positions of the particles, F is the uniform
force, and the d; describe the static friction, which is as-
sumed to have a random component.

By summing over j, it is seen that the threshold field
for this model is Fr =(d;), where the angular brackets
denote a spatial average. Thus, at F=Fr, h;=(F
—d;)/k is a random variable with zero mean. If one
defines new variables a; and A; which satisfy a;+,
—a;=h; and A;=x;4+, —x;+a;+|, then just at thresh-
old each f;=0 and A, —A;—;=0 for all j, so that A;
must be independent of ;. It is readily verified that
a; =X} =1 hn+ao, where ag is an arbitrary constant that
can be taken to be zero, so that

J
xj+1—xj=—[§,‘hm]. (4)

Since the h; are random variables with zero mean, the
separations obey a random walk. Thus, for a system of
size L, the maximum particle separation obeys &xmax
~L'2 Thus, this exactly soluble case yields results

consistent with the scaling arguments given above.

For d=2 it is straightforward to show that the spatial
average ((x; j+1—x,;)? «InL for the random friction
model at threshold.® For d > 2, although a typical fluc-
tuating region need not have a region of large strain at
its boundary, it can be shown rigorously that rare fluc-
tuations of Fr(L) will still cause unbounded strains.'®
This result follows because P(Fr(L)), the probability of
observing any value Fy(L) >0, is nonzero; it depends
roughly as''

P(Fr (L)) ~exp(— {[F7(o0) — Fr(L)ILD 2/2F (o) L9) .
(5)

These rare regions with very small Fr(L) are similar to
those that lead to Griffiths singularities in the context of
dilute ferromagnets'? and spin glasses.!* However, in
contrast to the situation for random magnets, for the
CDW system these rare fluctuations destroy the critical
behavior. '

Estimates of the diverging strain can be made using a
method similar to that of Randeria, Sethna, and Pal-
mer'? to discuss magnetic relaxations in spin glasses. A
region of size L in an applied force F* has strain greater
than Smax if Fr(L) < F* —Sma/L. The number of re-
gions n, with Fr(L) less than this bound is

n,~de fOF'P(FT(L)), (6)

where Fi=max(0,F* —Sma/L). The integral must be
evaluated keeping in mind the constraint Fr(L) > 0.
For d > 2 the integral is always dominated by the small-
est values of L, near L*=S../F*, leading to n,
~exp{— [Fr(0)(Smax/F*)¢/21}. Thus, n, is nonzero
for any F* > 0.

So far it has been shown that the model described by
Eq. (1) has unbounded particle separations. Now it is
argued that if the spring force is bounded then the time-
averaged velocity must be nonuniform. For simplicity,
consider a region R of size L with no impurities, so that
the random potential term vanishes inside the region. If
one requires the spring force to be less than some bound
kS max, then averaging the analog of Eq. (1) over the re-
gion R shows that vg, the spatially averaged velocity in
R, must satisfy

L= FL— S L% 7", @)

For any given F >0, by finding a large enough region,
one can bound vg to be strictly greater than zero. Simi-
larly, any region with Fr(L) < Fr(oo) will move if it is
large enough.'’> A more heuristic argument is to consid-
er what happens when the strain at the boundary of the
region exceeds Smax. For simplicity assume that if
8Xmax > Smax the spring breaks, so that it no longer ex-
erts any force.'® Now the force needed to keep the re-
gion stationary must be applied by fewer springs, so that
repeating the above argument indicates that another
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spring must break. Iterating this process shows that the
region must break free. This line of reasoning leads one
to conclude that the depinning of the region is discon-
tinuous, so that the velocity of the region jumps by
(Smax/L )%, where ¢ is the exponent describing the veloc-
ity characteristic in the model with no phase slip
(Smax— =) and L is the linear dimension of the re-
gion.!” The first-order nature of the depinning of a re-
gion is also supported by mean-field and single degree-
of-freedom calculations on related models. '

We now show that these results imply that phase slips
destroy the FLR critical behavior in all dimensions. For
d=1 and 2, as the putative threshold is approached, the
system breaks up into disconnected pieces and the FLR
model fails completely. For d = 3 a connected region of
the CDW could depin at a well-defined threshold field,
but when the correlation length of the FLR model
reaches the typical separation of moving regions the
FLR model should cease to be a good description. One
scenario is that phase slips drive the depinning discon-
tinuous. This possibility is supported by the fact that the
connected region must break free from regions that have
anomalously strong pinning and are hence stationary for
F> Fr(eo), so that a nonzero density of springs must
break at “threshold.” A second possibility (weakly sup-
ported by the experimental evidence cited below) is that
the phase slips act as effective noise sources and round
the transition. In either case the critical behavior is de-
stroyed.

The obvious experimental consequence of this work is
that FLR critical behavior at the CDW threshold transi-
tion is never seen, even in perfectly homogeneous sam-
ples. However, the effects discussed in this paper on the
CDW velocity in three-dimensional systems are very
small.'” On the other hand, this work may shed light on
the discrepancy between the experimental observation of
broadband noise in CDW’s above threshold?® and the
lack of such noise in the FLR model.?! Arguments simi-
lar to those presented above suggest that the FLR model
is an incomplete description of the CDW for fields above
the FLR threshold. Stationary and moving regions coex-
ist, so that phase slips must occur. It has been suggested
already that phase slip and broadband noise are inti-
mately connected,?? and this work indicates that the ex-
perimental observations are not caused by inhomogene-
ous samples, but result from intrinsic properties of the
system. This conclusion is in accord with the reproduci-
bility of the broadband noise observations and the fact
that strong ac fields that cause mode-locking suppress
the broadband noise.?> However, detailed experimental
predictions require better understanding of the phase-slip
dynamics.

This work may have interesting relations to other
models of nonlinear systems with many degrees of free-
dom. The results here are consistent with simulations of
two-dimensional magnetic-flux lattices with impurities
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that indicate that grain boundaries occur even for weak
pinning, and that these regions dominate the resistance
caused by flux creep at low temperatures.?* This work
may be related to that of Carlson and Langer on a model
of earthquakes;?* both models display a buildup of large
strains and catastrophic events. Systems exhibiting self-
organized criticality%® also have features similar to those
found in CDW models. However, these relationships
remain to be elucidated.

In conclusion, this paper has shown that a CDW in an
electric field must be described using both phase and am-
plitude fluctuations. When this is done, the critical be-
havior at threshold present in the phase-only model is
destroyed.
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