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New Collective Mode and Corrections to Fermi-Liquid Theory in Two Dimensions
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We study a two-dimensional Fermi gas with an arbitrary short-range repulsive interaction. We show

that the vertex part has an unusual singularity in the particle-particle channel for all momenta q & 2kF,
which is not found in higher dimensions. We interpret this as a collective mode representing a bound ex-
citation of two holes. This mode, however, does not lead to an instability, or to a breakdown of Fermi-
liquid theory in the low-density limit. The resulting Fermi-surface phase shift vanishes, and a ~at~'t'

correction to Z "(kr, to) is obtained. The 2D case is also contrasted with a similar calculation in 1D.

PACS numbers: 71.45.—d, 67.50.Dg, 71.10.+x

There have been recent suggestions' that the normal
state of the high-temperature superconductors is not an
ordinary Landau Fermi liquid. While interacting fer-
mion systems in one dimension are known to display
non-Fermi-liquid behavior, there are no simple examples
in higher dimensions of systems which do not have a bro-
ken symmetry and yet differ from a Landau Fermi
liquid. Anderson has recently suggested that the 2D
Hubbard model may have a non-Fermi-liquid ground
state due to a "nonrenormalizable phase shift" at the
Fermi surface coming from "antibound states above the
upper band edge. "

Another motivation for the present work comes from
the study of models with attractive interactions. Ran-
deria, Duan, and Shieh have shown that the existence of
a two-body bound state in vacuum is a necessary condi-
tion for an s-wave pairing instability in two dimensions.
This led them to suggest that the presence of some
bound pairs coexisting with unbound fermions might be
responsible for the anomalous normal-state properties of
short-coherence-length superconductors. Schmitt-Rink,
Varma, and Ruckenstein further studied attractive mod-
els at finite temperatures and argued that there are
two-particle bound resonances for all center-of-mass mo-
menta q & 2kF. The question of whether or not these
bound states lead to a breakdown of Fermi-liquid theory
in the weak-coupling regime is not clear at the present
time. It is clearly of great interest to know if such mod-
els with attractive interactions provide a microscopic
basis for the marginal Fermi-liquid theory of Varma et
al. as conjectured in Ref. 2. It thus seemed important to
us to study a Fermi gas with repulsive interactions more
carefully, before returning to the attractive case, to see if
any of these subtleties showed up there as well.

In this paper we study a 2D Fermi gas with arbitrary
short-range repulsive interactions. The 3D version was
studied many years ago by Galitskii, and it provided
one of the first examples of a Landau Fermi liquid in

which various quantities of interest could be explicitly
calculated. We find that the 2D case is rather different
from 3D, the main difference coming from the finite den-
sity of states at the bottom of the band. The vertex part
in the particle-particle channel has, in addition to the
usual branch cut representing scattering states, an isolat-
ed pole below the bottom of the two-particle band for
every center-of-mass momentum q ( 2kF. We show that
this collective mode is simply a bound excitation of two
holes.

The existence of these collective modes necessarily re-
quires us to go beyond any finite order in perturbation
theory. The energy of these modes relative to the two-
particle continuum has an essential singularity in the
strength of the repulsive interaction. This "breakdown"
of perturbation theory does not of course necessarily im-

ply a violation of Fermi-liquid theory (FLT). (As is well
known, collective modes like zero sound and paramag-
nons only lead to corrections to Fermi-liquid behavior in

3D and not to a qualitative change. )
We investigate the eA'ect of these collective modes on

the validity of FLT in the low-density limit. We show
below that in 2D the collective modes lead to a ~to~

I

correction to the standard 2D result for the imaginary
part of the single-particle self-energy X"-ca in~to~, and
that the phase shift vanishes at the Fermi surface. In
addition, we also look at the 1D problem, where we

again find the pole corresponding to this collective mode,
but in 1D the pole does not directly lead to any correc-
tion to X" and the Fermi-surface phase shift is again
found to be zero. Thus, in both 1D and 2D, the correc-
tions to X" due to the new poles are subdominant to the
contributions due to two-particle scattering which lead to
a violation of FLT in 1D but not in 2D.

Based on an analogy to the problem of noninteracting
fermions scattering oA'a single impurity, Anderson has
suggested that a nonzero phase shift at the Fermi surface
should be related to a violation of Fermi-liquid theory.
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citations in normal systems are in the particle-hole chan-
nel, and poles in the particle-particle channel for attrac-
tive interactions lead to instability (superconductivity).

It might be useful to contrast this mode with other
bound states that have been discussed recently in connec-
tion with possible violations of FLT. First, these q ( 2kF
poles are collective in nature in contrast to the q & 2kF
bound states in attractive models which, for large q, are
simply independent two-particle bound states. Second,
viewed as bound states of holes, these poles are analo-
gous to antibound states above the upper band edge in

the 2D Hubbard model. It must be emphasized that
these collective bound states exist even in a continuum
model and do not require an upper band edge; the lower
band edge (for the particles), which is essential for sta-
bility, acts like an upper band edge for the holes.

We next turn to a calculation of the phase shift de-
fined by I (q, co) = lI lexp[ib'(q, co)]. Many of the quanti-
ties of interest can be expressed in terms of the phase
shift as shown below. We now need a more general ex-
pression for A and 8 than was obtained earlier [since (6)
was valid only for co & uq]. The angular integration in

(3) can be performed to obtain

E lm uql &+ dy
A(q, co) =ln ' — y F(y;uq),

(&- —co) 2 " '
y

—co

Here the function F is given by
I~

F(y;uq )= —arccos-=2
yr 2J(y —uq)(u, +1)

(10)

and g+ =2(uq+ I+ Juq+I). The virtue of these ex-
pressions is that they make explicit the locations cD =(+
of all the features in the phase shift, and they allow us to
make asymptotic expansions. For uq &0 the resulting
phase shift 6 is negative within the two-particle band
(for co) uq) and vanishes below the band. For uq &0,
or equivalently q & 2kF, things are more interesting.
The phase shift is negative for co & 0, with 8 increasing
as co decreases below zero, showing a shoulderlike
feature at (—and finally attaining its maximum value of
x at the bottom of the band uq. Between the bottom of
the two-particle band and the collective pole energy,
given by (7), i.e., b(cuq)/2p ~ co ~ uq, the phase shift
8=—z, reflecting the bound state. Finally, 6'=0 for
cu & cub(q).

We now show, using the phase shifts, that the collec-
tive poles lead to an increase in total energy and the
chemical potential of the system. Within the ladder ap-

—I, for cD&g —,

8(q, co) =KG(cu —uq) x 1 F(cD;uq)—, for g & co & g+,

1, for g+ & co.

where the subscript 0 is used for the noninteracting sys-
tem. It can be easily shown that the change in the
ground-state energy due to interactions E(N) —Ep(N)
~ Q(pp) Qp(pp), where pp is the chemical potential
of the noninteracting system. From the non-negativity of
the phase shift below the Fermi surface and (11), it then
follows that the energy of the system increases. ' While
the contribution of the two-particle continuum (coq
& co) has to be evaluated numerically, that coming

directly from the bound states [cob (q) & co & coq ] is sim-

ply AQb/L 8m' /3irh E,.
The chemical potential of the interacting gas is deter-

mined by calculating the function N(p) = —|IA/8p and
solving for p for a given number density of fermions.
The correction coming directly from the bound states is

clearly ANb/L = —8mp /xh E, We h. ave calculated
the correction due to the two-particle continuum states
numerically and find' that AN is indeed negative and
hence p & po. The numerical result from the continuum
does not differ much from the low-order perturbative re-
sult of Ref. 16, where a 2D Fermi gas was studied
without appreciating the existence of the collective
modes.

Let us next look at the phase shift at the Fermi sur-
face (co=0). For 0&q &2kF, 6 goes to zero linearly
with a negative slope which depends on q. For q =0, the
phase shift vanishes singularly,

B(0,cD)=, cD 0.
In (E,/co')

(12)

This singularity is not special to 2D and comes from the
discontinuity in the occupation factors in (3) at the Fer-
mi surface which exists in all dimensions. ' Finally, for

q =2kF, the phase shift is 8= —co' /!nE, for co 0+
and identically zero for co 0 . Thus we find that
B(q, co =0) =0 for all q.

The single-particle self-energy is obtained from the
vertex part I by joining two of the exiernal legs, which
at T=O yields

e(P —cb -q)
—e( —s)

Z(k, cu+iri) =—g ds
Z q (2PF+ N+ 5g —

q P S+lg

XIm[I (q, s)], (13)

where the spectral weight CIm[I ] = —8/(2 +8 )
= —88 /8lnE, . As before we can separate the contribu-
tions of the pole (denoted by a subscript b) and the con-
tinuum. We find the pole contribution to be Im[I ]b
=(lcuq l /CE, )n8(cu —cob(q)). A straightforward but
lengthy calculation then shows that the low-lying collec-

proximation Nozieres and Schmitt-Rink' have ex-
pressed the thermodynamic potential in terms of the
two-body phase shift. At T=O we have

1
~0

n(p) —n p(p) =—g dco b(q, co),
& q(2k, "
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tive excitations near q =2k~ provide a correction to the
imaginary part of the self-energy that goes as Zt", (kt;,
to)-p(rDI t /E, for co 0 . The continuum gives the
well-known 2D result co inca whose coeScient in the
low-density limit' is of order (lnE, ) . Thus even with

the new bound excitations, the quasiparticles remain well

defined with an infinite lifetime as one approaches the
Fermi surface, and a nonzero quasiparticle residue Z.

Finally, it is interesting to ask what one obtains by us-

ing the above techniques in one dimension. From the
vertex part (4) in ID we again find a collective bound

pole below the two-particle continuum for q ( 2kt;. The
resulting Fermi-surface phase shift also vanishes in 1D,
but now phase-space restrictions lead to a vanishing con-
tribution from these poles to X"(kt;,to) within the low-

density regime. The continuum contribution, however,
gives Z"(kt.-,ro)-to, and Z=O, also for simple phase-
space reasons. Thus, in one dimension, the collective
poles do not appear to play a role in the breakdown of
Fermi-liquid theory. (This is perhaps not altogether
surprising in view of the fact that many of the commonly
used ID approximations ignore the band edges, and thus
would not even obtain the collective mode. )

To conclude, we have shown that a new collective
mode, which is a bound excitation of hole pairs, exists in

two dimensions where there is a nonzero density of states
at the bottom of the band. Since these arise from non-

perturbative effects in the particle-particle channel, we

used the ladder approximation which is reasonable for
low densities. The connection, if any, between the ex-
istence of such bound excitations and the breakdown of
FLT is not clear. Our results suggest that either there is

no breakdown of Fermi-liquid theory in 2D, or else that
it is sufficiently subtle that it is not enough to go beyond

any order in perturbation theory in the interaction but it
is also necessary to go beyond the low-density approxi-
mation. Of course, a lot of effort has recently gone into
attacking the Hubbard model near half filling, which is

the opposite extreme in terms of density to the problem
studied here. But there one has other instabilities —like

magnetism, metal-insulator transition, and possibly,
superconductivity —to contend with.
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