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Stopping Power for Helium in Aluminum
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The relative contributions to the stopping power of the diff'erent charge states for a beam of helium

ions moving with velocity U in aluminum are shown, for the first time, from a first-principles calculation.
Combining dielectric and density-functional results in the appropriate velocity range with the energy lost
in the capture and loss processes we have obtained good agreement with experiment.
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The problem of the energy loss of ions moving through
solids has attracted the attention of physicists since the
beginning of the century. In the high-velocity regime the
ion is stripped of its electronic charge and the theories of
Bethe ' and Bloch of electronic stopping give a good
description of the energy-loss process. At low velocities
the ion is surrounded by a cloud of polarization charge
and one must take into account the perturbation intro-
duced in the medium by the incoming ion. After the
pioneering work of Fermi and Teller, some calculations
were done within the framework of dielectric theory,
the binary encounter approximation, and with different
model potentials. The density-functional theory allows
one to calculate the induced screened potential, the den-

sity fiuctuation, and the energy loss at low speeds in a
self-consistent way. The first explicit calculations of the
stopping power in this formalism were performed by
Echenique, Nieminen, and Ritchie for hydrogen and
helium, and later were extended to higher ionic charges.

At intermediate velocities there is no rigorous theory
of the stopping power for ions moving through solids,
even in the case of light ions. Some calculations have
been done with different degrees of agreement with the
available, scattered, experimental data in the energy re-

gion near the stopping-power maximum. Effective-
charge theories have been proposed' to explain the stop-

ping data. This effective charge is related to the mean
occupation number of the ion's bound states. But in the
effective-charge approach nothing is said either about
the energy loss in charge-changing events or about the
fractional stopping power associated with each charge
state. Separating the different contributions to the stop-
ping power has, besides its intrinsic theoretical and ex-
perimental interest, " relevance to fields such as sec-
ondary-electron emission. '

We have calculated the stopping power for He in

aluminum as a function of the intruder velocity with ex-

plicit inclusion of solid-state effects to calculate the
charge-state distribution inside the medium. In our ap-
proach, linear-response theory in the dielectric formalism
is combined with many-body techniques to calculate the
energy loss per unit path length. The main assumptions
of our model are as follows.

(i) A bound level is well defined over the whole range
of He velocities. In the static case bound levels appear
at metallic densities, and at high speeds, where the strip-
ping probability is high, atomiclike states may be occu-
pied since electrons in the conduction band do not have
enough time to screen the ion. ' This can be easily seen

by calculating the energy of an electron bound to a He
nucleus through a screened Coulomb potential with a
velocity-dependent screening parameter that reproduces
the static and high-velocity screening limits. One finds
that the extension of the wave function is not very
different from the ls wave function of a He atom in vac-
uum and it is smaller than the lattice constant of Al
(a=4 A).

(ii) The equilibrium charge-state fractions of bare ions
(p++), singly ionized ions (p+), and neutral atoms (po)
as determined by the different mechanisms discussed
below are given in terms of the probabilities per unit
time of capturing and losing the electrons as

0++ =rjoss(He+)rloss(He

=r(...(He )I„p,(He++)D

y'=r„„(He+)I „p,(He++)D -',
where

(la)

(lb)

(1c)

D =I t„,(He+)I i„,(He )+I ~„,(He )I „pt(He++)

+r„p (He+)r„p, (He++) .

In these equations I ~„,(He ) and I ~„,(He+) are the
probabilities per unit time of losing an electron by the
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neutral atom and by the single ionized ion, respectively, while I „~,(He++) and I „.~,(He+) are the corresponding prob-
abilities per unit time of capturing an electron by the bare helium ion and the single ionized one. We have neglected
double-electron capture by the bare ion and double-electron loss by the neutral atom.

(iii) The stopping power is calculated by summing the stopping powers for each charge state weighted by the respec-
tive charge-state fractions, and adding the energy loss per unit length in capture and loss processes. Thus we write for
the stopping power

dE
dx

total

(He++)+&+ (He+)+p (He )+y++ (He++)
dx dx dx dx

+y' (He+)+ (He') +y' (He') .
dx dx dx

(2)

In Eq. (2), dE9dx and dE /dx are the energy losses per
unit path length in the capture and loss processes [see
Eqs. (4) and (5) below]. The stopping power for bare
ions [dE/dx (He++ )] and singly ionized ions
[dE/dx(He+)], relevant at high and intermediate veloc-
ities, is calculated in linear theory. The contribution of
inner-shell excitations (2p and 2s shell electrons of Al)
to the stopping power for bare ions has been taken into
account using standard methods. ' Energy loss by the
He+ ion is computed accounting for the interaction of
the charge densities of the electron and the He nucleus
with the medium. For the He charge state (relevant at
low velocities) we have calculated the stopping power
[dE/dx(He )] using the phase shifts at the Fermi level

[81(EF)] for scattering of electrons by the self-consistent
potential, created by the He, calculated in density-
functional theory. It is given by (atomic units are used
in this paper)

t of characteristic frequency co=-v/a (a being the lattice
constant) which may result in a transition of an electron
from the conduction band to the bound level of the ion;
we call these resonant processes. (iii) A direct capture
of an electron from the conduction band assisted by
creation of a plasmon or an electron-hole pair may also
occur. These, denoted as Auger processes, give the
greatest contribution to the capture cross section at low

velocities. Auger and resonant processes may also result
in the loss of an electron bound to the moving singly ion-

dE
(a.u. )

dx

1.0

(He ) = g (I+1)sin [bi(EF) —St+1(EF)],
kFr~ I ~0

(3)

where v is the ion speed, r, is the one-electron radius,
and kF is the Fermi tnomentum of the electrons (kF
-1.92/r, ). This way of calculating the stopping power is

strictly valid in the v 0 limit, but a comparison by
Mann and Brandt'5 of experimental data of the stopping
power for protons in twenty different elemental solids
shows that the linear dependence on velocity holds up to
v =vr (= 1 a.u. in Al). It could be argued that our cal-
culation overestimates the stopping power of He for in-
termediate velocities (1 ( v (2), while at the same time
it underestimates the stopping power of He++ and He+.
One could expect, however, that both effects tend to
compensate, as the results of the total stopping power
(see Fig. 1) suggest.

Several mechanisms can result in an electron being
captured into a bound state of the moving ion: (i) An
electron can make an atomiclike transition from a bound
state of an atom in the lattice to a bound state of the
moving ion. We shall refer to it as a shell process hence-
forth. It is relevant at high velocities. (ii) The ion mov-

ing through the lattice feels a time-dependent potential
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FIG. 1. Stopping power in atomic units of Al for helium
ious as a function of ion speed. The thick solid line (TOTAL)
is the result of our calculation and the curve labeled LT is ob-
tained from linear-response theory for a bare ion. Both of
them include inner-shell corrections. The circles are the exper-
imental data. The diA'erent contributions to the curve labeled
TOTAL from the fractions of bare ions (He++), singly ionized
ious (He+), neutral atoms (Heo), and capture and loss pro-
cesses (C&L) are shown separately.
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ized ion (He+) or neutral atom (He ). The shell capture cross sections are calculated in the Brinkman-Kramers ap-
proximation with a reduction factor fixed by the experimentally measured charge-state fractions at high velocities. '

The reduction factor that we have used is 6, a value consistent with Eichler's calculation. ' The Auger and resonant
capture and loss cross sections are found from the imaginary part of the self-energy associated with the He-
nucleus-bound-electron composite. '

The energy loss per unit path length in the shell capture process is obtained' in terms of the target atomic density,
the energy of the electron bound in the nth shell of the Al atom e„, the binding energy of the captured electron eo, and

the cross section a„o for the n 0 transition. In the resonant capture and loss processes it is given by

dE„; 2zD,
(G v)l«G)l'1&~le"'lk)l'&«1, o~G v), (4)

G ik+v )(kF
and for the Auger capture and loss processes we obtain

, (q'v), Im' 'IMiol ~(ro+ ~E) (5)
dx 2n q

In Eq. (4), G is a reciprocal-lattice vector, V(G) the
Fourier transform of the effective potential acting on the made. In the case of helium the bound states are well

incoming electron that we have approximated by a Har- defined and so it is a clear case to illustrate our new per-
tre screened pseudopotential, and Ei,o=Eb+k /2. In spective in the difficult problem involving the stopping of
Eq. (5), Mko=(sle' 'lk) and AE =q v+Eb+k /2. ions having low to moderate velocities. For protons,
—Eb and ls& are the binding energy and wave function some difficulties arise related to the existence of the H
of the bound electron that we have calculated variation- state. The existence of a state in the solid having the
ally by a minimization procedure. We denote by lk) a character of H does not imply that the state is similar
plane wave orthogonalized to the state ls), thus describ- to the free negative ion; it is a state that can exist as a
ing electron states in the conduction band accounting for result of the interaction of the projectile with the solid.
the high nonlinearity of the electron-gas-ion interaction In the metallic density range, capture and loss cross sec-
s(q, co) is the response function of the electron gas that tions for the H have to be included in the model. We
we have approximated by a random-phase-approx- have performed such a calculation for the case of protons
imation (RPA) response function. D, takes into ac- moving in aluminum. The results of our calculation
count the spin degeneracy of the electron states; i.e., in agree well with the experimental data and will be pub-
the capture of an electron by the bare ion or in the loss lished elsewhere. For higher electron-gas densities the
by the neutral atom, D, =2, while in the capture and loss bound-state character disappears and the modeling be-
of an electron by the singly ionized ion, D, =1. comes much more complicated since one has to include

The results obtained from Eq. (2) for the stopping the treatment for scattering from continuous resonant
power of He ions moving with velocity v in Al are shown states.
in Fig. 1 as the thick solid line (labeled TOTAL). The In conclusion, the electronic stopping power of alumi-
curve labeled LT is the stopping power for bare ions cal- num metal for He has been calculated with explicit in-
culated in linear theory using an RPA dielectric func- elusion of the different charge-state populations inside
tion to represent valence-electron excitations in alumi- the medium. The total stopping power is obtained by
num, with r, =2. Inner-shell corrections from the 2s and weighing the appropriately calculated stopping powers
2p electrons of the Al ions have also been included. ' with the respective charge-state fractions and adding the
The different contributions to the curve labeled TOTAL energy loss per unit path length due to electronic-
have been separated to show the relevance of the various exchange processes. The relative contribution to the
terms as a function of ion speed. When v=1 a.u. the stopping power from capture and loss processes may be
contributions from the neutral-atom (He ) fraction, 15% for the case of He moving in aluminum. Good
from the singly-ionized-ion (He ) fraction and bare-ion agreement with experimental data is found.
(He++) fraction are comparable, each being about 30% The authors gratefully acknowledge help and support
of the total, while that of charge-exchange (capture and by Eusko Jaurlaritza, Gipuzkoako Foru Aldundia,
loss) processes is about 10%. The contribution from the Euskal Herriko Unibertsitatea, the Spanish Comision
inelastic processes of capture and loss is about 15% at Asesora Cientifica y Tecnica (CAICYT), and NATO
v =2. At high velocities the stopping of the bare ion Research Grant No. 0142187. The authors would like to
dominates, as it must, and at low velocities the neutral- thank Iberduero S.A. for its help and support.
atom energy loss is the biggest contribution. The circles
are the experimental data from Refs. 20 and 21.

A final comment related to the choice of helium as the
projectile rather than the more obvious choice of an ap-
parently simpler projectile, namely, hydrogen, should be
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