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We have investigated the behavior of nonconservative (100) antiphase boundaries in L12-ordered al-
loys, close to the congruent first-order order-disorder transition. Very accurate inhomogeneous cluster-
variation-method calculations in the tetrahedron approximation show that wetting does occur through an
infinite series of layering transitions with average logarithmic divergences for the width of the wetting
layer and for the excess entropy.

PACS numbers: 68.45.Gd, 61.70.Ph, 68.35.Rh, 82.65.Dp

From a very general point of view, an order-disorder
transition is associated with a broken symmetry: The or-
dered phase has less symmetry than the disordered one.
When the ordering process starts at diA'erent places of
the disordered lattice, different variants (or domains) of
the same ordered phase can therefore appear and coexist.
An antiphase boundary (APB) forms wherever two such
domains contact.

Whether the ordering transition is first or second order
is a very important factor for the qualitative behavior of
the APB. At the critical temperature of a second-order
transition, the ordered phase becomes identical with the
disordered one and, consequently, the APB disappears.

On the other hand, for a first-order transition, the or-
dered domains always retain a certain degree of long-
range order and APB exist up to the transition tempera-
ture T, . In that case, the APB free energy (i.e., the ex-
cess free energy with respect to a situation with no APB)
does not vanish at T, . It may happen, however, that,
precisely at T, and in order to minimize the excess free
energy, the APB takes a particular configuration and
that a layer of disordered phase develops between the
two ordered domains. In other words, the APB may split
into two order-disorder interfaces: This is called com-
plete wetting of the APB by the disordered phase. In
fact, within a continuous theory and if the ordered phase
can be described with a one dimensiona-l order parame-
ter, it is easy to show that wetting must occur, and that
the width of the wetting layer as well as the APB entro-

py diverge logarithmically as the temperature T in-
creases up to T,. '

Many experimental and theoretical studies have been
devoted to wetting phenomena. We will consider here
the case of a binary alloy on the fcc lattice which orders
according to the Cu3Au-type L12 structure. Wetting in
that case has recently been observed in a Co30Pt70 alloy,
and had in fact been predicted before by Kikuchi and
Cahn using in homogeneous cluster-variation-method
(CVM) calculations. The accuracy of their calculation,
however, was not sufficient for studying in detail what
happens close to T, .

In this Letter, we present a detailed and very precise
study of a nonconservative APB in L12 as a function of

Tc

0 75 l2 h/J
FIG. 1. Schematic phase diagram obtained within the

tetrahedron CVM (see Ref. 6).

temperature. The numerical method used is the CVM in

the tetrahedron approximation. A particular feature of
this study is that the ordered phase is described by a
three-dimensional order parameter. In such a case, wet-

ting as mentioned above may not occur or may be
modified because of lattice effects neglected in the con-
tinuous approximation. In particular, layering transi-
tions, corresponding to discontinuous variations of the
concentration profiles as a function of temperature, may
well occur. This is precisely what has been found in this
work, as we show below.

Note that since the present order-disorder transition is
in the universality class of the four-state Potts model,
our study has some parentage with those dealing with in-

terfacial wetting in the Potts model.
To describe ordering effects, we use the Ising model

with positive first-neighbor interactions:

H=J g a„a hga. ,
— (I)

(n, rn) n

where the prime means that the sum is over first-
neighbor pairs. The spinlike variables cr„ take values
+ 1 depending on the type 2 or 8 of the atom at site n.
The corresponding phase diagram presents three ordered
phases at stoichiometries AB, A3B, and AB3 (Fig. I).
Its precise shape close to the AB-A38 (or AB3) bound-

ary is still controversial, but this is not the case near the
congruent point of the A 38 structure.

This is the region we shall consider in the following.
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FIG. 2. Solid (open) circles represent 8 (A) atoms. Large
(small) circles are the sites on (00n) planes with n integer
(half integer). The index i 0, 1, 2, and 3 labels the four sim-

ple cubic sublattices, and n the tetrahedra along [001] (one of
them is represented by dotted lines).
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More precisely, we shall work at field h =7.5J. The cor-
responding critical temperature is T,/J 1.9426375061,
which is very close to the congruent point. At zero tem-
perature, the As8 equilibrium state is infinitely degen-
erate but, at finite temperature, this degeneracy is lifted
and the stablest structure is the simplest A i8 one, name-

ly, the L12 phase.
In L12, one simple-cubic sublattice of the fcc structure

is predominantly occupied by 8 atoms, and the three
others by A atoms. Since there is a choice for the sublat-
tice occupied by 8 atoms, L12-type ordering leads to four
different variants or domains. The L12 phase can also be
analyzed as an infinite sequence of alternating pure A
and mixed AB (001) planes [Fig. 2(a)]. The contact be-
tween two different ordered domains leads either to a
conservative APB [Fig. 2(b)] or to a nonconservative one
[Fig. 2(c)l. With first-neighbor interactions only, the
energy of a conservative APB vanishes at zero tempera-
ture, and in fact at any temperature within the CVM
tetrahedron approximation. We therefore consider the
nonconservative situation, as in Ref. 4.

Our aim is to calculate the equilibrium state of an in-

homogeneous system with definite boundary conditions.
We use the CVM which is known to be a very precise
method and is in principle fairly easy to implement. The
free-energy minimization is performed on a finite system
containing typically one or two hundred tetrahedra along

[001], and therefore involves a few thousand variational
parameters. The APB free energy per site is of the order
of 0.1Jclose to T„to be compared with a total energy of
about a few hundred J. On the other hand, the splitting
of the APB involves energies less than 10 J. Different
numerical minimization procedures can be used. We
have found that a very efficient method is the brute-force
global Newton-Raphson procedure, provided advantage
is taken of the nearly block-diagonal structure of the
Hessian matrix. This method ensures an accuracy on

free energies better than 10 ' J.
The index n will now label the nth tetrahedron along

direction [0011 and the index i =0, 1, 2, or 3 the four
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simple-cubic sublattices [see Fig. 2(c)]. Each tetrahed-
ron shares one site with each sublat tice. Let c„'
=(1 —cr„')/2 be the concentration in minority atoms at
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FIG. 3. Calcnlated profiles for the APB at T =T,
. 0778 x 10J (h 7.5J): (a) sublattice concentrations c,

c', c2, and c', (b) order parameters ri', ri', and g (note the
region where g' and g strictly vanish), and (c) excess local
free energy.
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FIG. 4. Excess entropy hS as a function of temperature T.
The dotted lines mark the first-order layering transitions.

site i in tetrahedron number n. In a perfectly ordered

Llz phase, this concentration does not depend on the in-

dex n and one of them is equal to 1, the three others to 0
(say, c =1, c' =c =c =0).

We consider here the case of a nonconservative APB
along direction [001]; i.e., we assume that minority
atoms principally occupy sublattice 0 (or 3) at z = —~
and 1 (or 2) at z =+~ [see Fig. 2(c)]. As this is an in-

homogeneous situation, the concentrations c„' now de-

pend explicitly on indices n and i. More precisely, for a
given tetrahedron n, the four concentrations c„',i =0, 1,
2, and 3, can be a// diA'erent. Therefore, besides the
mean concentration (c„+c„'+c„+c„)/4,a three dimen-
sional order parameter r/„ is needed to describe com-

pletely the degree of order. We therefore introduce

measure the local amplitudes of the concentration waves

of q vectors (100), (010), and (001), respectively.
We first discuss the equilibrium state of the APB at a

temperature very close to the transition temperature:
T=T, —0.778X10 J. In Fig. 3(a) are shown the con-

centration profiles c„',i =0, 1, 2, or 3, which clearly

display a large (but finite) wet region (the profiles at
lower temperature are similar to those presented by Ki-
kuchi and Cahn ). A remarkable feature of these
profiles is that the (001) planes in the central layer are
strictly disordered when they are considered as two-

dimensional square lattices. This is still more striking
when we draw the order-parameter profiles g„,a =1,2, 3.
The order parameters g„' then strictly vanish in the wet-

ting layer [Fig. 3(b)]. We also show in Fig. 3(c) the
free-energy profile obtained by decomposing the total
free energy into a sum of tetrahedron free energies.

We have then investigated in more detail the wetting
process by computing the variation with temperature of

FIG. 5. Illustration of the wetting process: As the tempera-
ture increases up to T„the width of the wetting layer increases
discontinuously (by jumps of two atomic planes) through an

infinite series of first-order transitions (see Fig. 2 for the site
representations).

the APB free energy and entropy. Typical results con-

cerning the APB entropy are presented in Fig. 4. The
remarkable point is that we have found an infinite series
of first-order transitions associated with entropy jumps.
We have verified that each jurnp corresponds to the dis-

ordering of a mixed plane in the central region. As a re-

sult, the APB is completely wet at T, by the disordered
phase. More precisely, as the temperature increases up
to T„the width of the wetting layer increases discon-
tinuously through an infinite series of jumps of t~o
atomic planes (see Fig. 5 for an illustration of this layer-

ing process; completely similar results have been ob-
tained using the Bragg-Williams approximation).
Hence, the width of the APB, defined as the number of
consecutive disordered atomic planes in the central layer
is always an even number 2/. Let TI be the transition
temperature between phases 2(l —1) and 2/ We have.
computed the first twenty temperatures TI, Fig. 6 clearly
shows that I behaves asymptotically as ln(T, —TI)
This kind of logarithmic behavior is in fact common to
numerous wetting eff'ects in the presence of short-range
interactions. As a technical remark, it may also be not-
ed that, due to the first-order character of these transi-

tions, many metastable states can exist close to T, : For
example, all phases 21 with 1&6 are metastable at
T=T, . As a consequence, the true equilibrium state
cannot be obtained through a single minimization pro-
cess: For a given temperature, one has to compare the
free energies of a11 phases 21.

The wetting and layering mechanisms observed in this
study can in fact be explained using fairly simple quali-
tative arguments. We just mention here two points.
First, within a continuous theory, it is easy to show that
the APB free-energy minimization, which depends on a
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infinite series of first-order layering transitions. pne
may wonder whether layering is not forced by the
mean-field theory that neglects fiuctuations. Preliminary
Monte Carlo simulations show that this is probably not
the case and that the roughening temperature is above
Tc

On the other hand, other calculations in progress show
that layering effects do not appear for (110) and (111)
orientations and that the results are not qualitatively
modified in the presence of second-neighbor interactions.

10' 10' 10 ' 10' 10 ' 10' 1Q' 10' 1Q'

FIG. 6. Half'-width of the wetting layer l vs logio(T, —Ti):
Note that the logarithmic behavior is observed for more than
four decades.

three-dimensional order parameter, reduces, in the pres-
ence of first-neighbor interactions only, to a one-di-
mensional problem and that, consequently, wetting
should occur. Second, an analysis of the discrete mean-
field (Bragg-Williams) equations can explain the layer-

ing mechanism.
To summarize, complete wetting of nonconservative

(100) APB has been shown to occur as the temperature
increases up to the transition temperature T„through an
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