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Calculation of Giant Fractional Shapiro Steps in Josephson-Junction Arrays
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We calculate the response of an N x N array of resistively shunted Josephson junctions to an imposed
current I ld, +I„sin(2n'vt). In a transverse dc magnetic field of p/q= f flu—x quanta per plaquette of
area, we find fractional giant Shapiro steps in the time-averaged voltage (V) at values (V) nNhv/2eq,
n 1,2, 3, . . . , in agreement with the measurements of Benz et al. At f —,', —,', and —,', we find addi-

tional fractional steps at (V) Nhv/4e. A generalization of the model of Benz et al. accounts for both
the fractional giant steps at p/q and the anomalous half-integer steps.

PACS numbers: 74.50.+r, 74.40.+k, 74.60.Ge, 74.60.Jg
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Equation (1) describes the current from grain i to grain

j as the sum of a normal contribution V~/R;, and a
Josephson current. Equation (2) is the Josephson rela-
tion connecting the voltage difference V j between grains
i and j and the phase difference t); —

(sj between the
phases of the order parameters. Finally, Eq. (3) is

When a resistively shunted Josephson junction is sub-
jected to a combined dc and ac current l(t) Id, +I„
xsin(2trvt), the time-averaged voltage (V) across the
junction exhibits plateaus, known as Shapiro steps, at
multiples of hv/2e. The height of Shapiro steps provides
an extremely accurate means of measuring the funda-
mental ratio h/e.

In this Letter, we calculate the response of an N&N
square Josephson-junction network' to a combined dc
and ac current. In a dc transverse magnetic field H

(p/q)4p/a, where So=bc/2e is the flux quantum, a
is the lattice constant of the Josephson-junction network,
and p/q= f is the ra—tio of two mutually indivisible in-

tegers, the time-averaged voltage drop (V) across the ar-
ray is found to exhibit steps at intervals of (N/q)hv/2e.
Our I-V characteristics agree quite well with those mea-
sured by Benz et al. At f 5, —,', and —,', we find addi-
tional fractional steps at (V) =(N/2)hv/2e While the. se
extra fractions are not seen in Ref. 3, they might be
found at lower temperatures, less disorder, or a different
ac amplitude or frequency than those studied experimen-
tally. We generalize the phenomenological model of
Benz et al. to account for both the steps found by them
and our anomalous half-integer steps.

Our calculation proceeds by directly solving the equa-
tions for a network of resistively coupled Josephson junc-
tions in the limit of zero shunt capacitance and negligible
array self-inductance:

Kirchhofl"s law, expressing current conservation at grain
i The .given form of the Josephson current is appropri-
ate in a transverse magnetic field B V&A. The factor

hatt' Xi

(2n/4o) „„Adx,

where x; is taken as the center of grain i. We assume a
square array of N&N junctions [or (N+1) x(N+ I)
grains]. A current I Ia, +I„sin(2trvt) is fed into each
grain in the top row and extracted from each grain on
the bottom row, with free boundary conditions on the
two transverse boundaries. Combining Eqs. (1)-(3)
yields coupled first-order nonlinear differential equations
for the phases, which can be solved iteratively. We have
carried out this iteration using time steps of 0.01z to
0.02r, where r 6/2eRI„R being the shunt resistance
and I, the critical current of each junction.

Figure I shows representative voltage traces for
12x 12 and 10x 10 arrays at several values of the flux
per plaquette f, measured in units of bio, using I„=I„
and to/too 0.1, where ro 2trv and too =2tr/r. This
value of I„was chosen to correspond to the experimental
conditions of Ref. 3; but we found numerically that the
same Shapiro steps were also present for other, greater
or lesser, values of I„, as well as in disordered samples
with random I, 's. The time-averaged voltage (V) shown
is the difference between the mean voltages along the top
and bottom rows, typically averaged over the time inter-
val of 800r. The I-V characteristic is calculated at inter-
vals of 0.0 1 5I„ the current being ramped up after each
I-V point is evaluated. For initial conditions, we have
used parallel phases for the first point calculated, with
subsequent points obtained using as an initial state the
final phase configuration of the previous point. Other in-
itial conditions were tried, and generally produce only
slight differences in the I-V characteristics, except for
somewhat broadening the riser to the first step at f=0.

For all fields shown, there are characteristic plateaus
in (V), generally with spacings of Nhv/2eq. The q =1
plateaus are usually much wider than those at higher
q. Also, the principal (n = 1) giant step is far
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FIG. l. Time-averaged voltages (V(i)) vs dc current Id, m

an N&N array of Josephson junctions at several values of the
transverse magnetic field. f is the flux per plaquette in units of
a flux quantum p c e.hc/2e. N 12 for all curves shown except

f —,
'

and —' for which N 10. The notation "gm" refers to a5, orwic
fl 1 tt f 1

—(J5 —1)/2. ln all cases, there is an

ac current I„sin(2zvr) with 1„1,and v 0.1(2eRI,/
where I, is the critical current of a single junction and R is t e
shunt resistance. All except the f 0 curve are horizontally
displaced; except or Jd; t for J 0, the critical current for the onset of
nonzero voltage is about 0.05. Inset: Expansion of half-integer
step at f

broader than the higher-n plateaus. For f=1 —
g, where

g (J5 —1)/2 is the golden mean, the differential resis-
tance dV/dI is nonmonotonic, and seems to show a pre-
cursor of an integer giant step at Nhv/2e. When f

d —' w find "anomalous" half-integer steps at5, an 3, we

(N/2)hv//2e. These steps are not artifacts of the calcula-
tion, as is shown in the inset of Fig. 1 where we show an

enlarged portion of the I-V characteristic for f= —,
' .

The Shapiro steps are rounded by both disorder and
finite temperature. To introduce disorder in the critical
currents (but not the shunt resistances), we allow a frac-
tion 1 —c of the junctions, chosen at random, to have
critical current 0.5I„while the remainder have I,. At
both f 0 and f —,', we find that the width of the steps
is reduced, for fixed values of v and I„,while the edges
of the steps are slightly rounded, and at f=0 the riser to
the first giant step is somewhat broadened. We include
temperature by adding to each junction a parallel
Langevin-noise current source IL&t& ~Ref.( ) (Ref. 5) with a
Gaussian distribution whose ensemble average satis-
fes (I, (i)), -0, (I,(i)I, (i')), =(2k&T/R)b(r —i'), and
noise currents in different junctions assumed uncorrelat-
cd. As shown in Fig. 2, such temperature noise at f=0
significantly rounds the steps. We have found simi ar
behavior at f=

2 for both disorder and finite tempera-
ture.

suitIn a single Josephson junction, Shapiro steps resu
from mode locking. On the steps, the voltage is a period-
ic function of time, corresponding to a synchronism be-

tween the applied ac field and the natural frequency of
the voltage across the 3osephson junction. Between the
steps, however, these two modes do not lock and the volt-

age is aperiodic. Both the integer and the fractiona gi-
ant steps of Fig. 1 exhibit similar behavior, as is illustrat-
ed in Fig. 3 for f —,'. We find that other values of f
behave similarly, even in the presence of tsor er. In
particular, the half-integer step at f —,

' is characterized
by a periodic voltage signal.

Next, we generalize the model of Benz ei al. to allow
for additional fractions beyond those permitted in their
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IFIG. 3. Voltage traces V(t) for a 12& 12 array at f r, as
in Fig. 1, with (a) Id, 0.20 (no step); (b) ld, 0.46 (step at
Nh v/4e)
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FIG. 2. Time-averaged voltage (V) for a disordere d 12X12
array of Josephson junctions subjected to an applied current as

nt I 'in Fig. 1. c is the fraction of junctions with critical curren
the remainder have 0.5I,. T is the temperature in units of
AI, /kate
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model. The static properties of Josephson-junction ar-

rays, in the absence of an applied current, are often de-
scribed in terms of the so-called frustrated xy model.
This model is equivalent, via a Villain transformation, to
a classical Coulomb gas of "vortices" of charge f and
1 f.—The charges are constrained to sit in the centers
of the plaquettes formed by the grains, have interactions
which are logarithmic at sufficiently large separations,
and are of such numbers as to insure charge neutrality.

Following Teitel and Jayaprakash, we assume that, in

a transverse magnetic field of p/q flux quanta per pla-

quette, the ground state of a square lattice has a unit cell
of q&q plaquettes. The plaquettes contain vortices of
charge p/q and 1

—p/q, arranged so as to insure charge
neutrality and minimum energy. When a dc current is

applied to this lattice from top to bottom, it drives the
positive charges to the left and the negative ones to the
right. If the current is large enough, one possibility is

that the lattice will be depinned as a whole from the un-

derlying "egg-carton" pinning potential, producing a net
flow of positive charge to the left, and hence, a voltage

drop from top to bottom. This flow can be visualized as
a series of processes in which a positive and an adjacent
negative vortex change places. With each interchange,
there is a phase slip of magnitude 2x (since the total
charge moving across the vertical bond separating posi-
tive and negative charge is unity).

To illustrate the emergence of fractional steps, we con-
sider f 1/q. The smallest rigid motion of the vortex
lattice which will return it to an equivalent energy
minimum is one array lattice constant, a distance a. q
is the number of charge interchanges, per q xq unit cell,
required to accomplish this motion. If these occur in

time to, then there will be one phase slip per row of
length q in time to [see Fig. 4(a), where this process is il-

lustrated for the case q 5]. The voltage drop along
such a row will be 2zh/2etp, or (N/q)2zh/2etu across
an NxN array. To produce a Shapiro step, the vortex
lattice must move a multiple of the distance a per cycle
of the ac field, so that the lattice motion can lock onto
the egg-carton potential. This requirement is equivalent

to I/to nv, or V nNhv/2eq, where n is an integer.
This argument accounts for the fractional steps at multi-

ples of Nhv/2eq, but similar arguments can explain at
least some of the ratios p/q where p & 1.

To account for the half-integer giant steps at f= —,
'

and 3, we propose that at such fields, the vortex lattice
is not necessarily depinned as a unit, but instead, at cer-
tain currents, a sublattice consisting of every second row

of vortices moves as a unit to the next equivalent energy
minimum in a single cycle of the ac current. During
each cycle, half the positive charges move a distance qa
to the left, while the other half do not move. (During
the next cycle, presumably the other sublattice moves in

a similar fashion. ) In a qxq unit cell, there will be q/2
phase slips per row of length q in time ru 1/v, and,

(a) p 4h+

(b) +

FIG. 4. Ground-state vortex configuration for f —,', after
Teitel and Jayaprakash. The + symbols denote positive vor-
tices of charge &, other plaquettes contain vortices of charge

Arrows in (a) denote the pattern of positive-vortex

motion required to move entire vortex lattice a distance a to
the left, as postulated by the model of Ref. 3. This motion pro-
duces a voltage step at ,' 1Vhv/2e. Arrow—s in lower picture
show motion required to move one vortex sublattice a distance
Sa to the left, as proposed in the present paper. This motion
produces a step at ,' Nhv/2e. —

therefore, a half-integer giant step at (N/2)hv/2e across
an N x N lattice. This process is illustrated in Fig. 4(b).

Intuitively, this kind of phase slip seems energetically
favorable. The motion involves exciting a high-wave-
number distortion of the vortex lattice in the presence of
the periodic pinning potential. Such a mode might cost
less energy to excite than a motion of the lattice as a
whole. Moreover, such distortion modes may also occur
at other values off p/q. If the unit cell is q x q, such a
sublattice motion of this kind would also lead to a half-
integer giant step for such values of q. Accordingly, we

propose that, in addition to those found by Benz et al. ,
there are also steps at (N/2)hv/2e for other odd values

of q.
The picture proposed here is obviously only the initial

stage of a detailed model for fractional giant Shapiro
steps, which may have implications for the use of such
arrays as coherent emitters or absorbers of radiation.
There may be many other complex instabilities of a vor-
tex lattice besides those discussed here, each giving rise
to its own signature of Shapiro steps. For example, if
every third row moved by qa, the voltage drop would be
(N/3)hv/2e, and so on. There are slight hints of other
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such "anomalous" steps even in our rather small-lattice
calculations. Even the "nonanomalous" fractional steps
at nNhv/2eq could be accounted for not only by rigid-
lattice motions but also by modes involving various sub-
lattices of the vortex lattice. For example, some of them
could be produced by motion of every second row at a
field with even q. Such a motion would generate only
non anomalous fractions, indistinguishable from those
predicted by the model of rigid-lattice motion.
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Nore added. —Similar calculations have recently been
carried out by J. U. Free, S. P. Benz, M. Rzchowski, M.
Tinkham, and C. J. Lobb (to be published).
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