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Mott-Hubbard Metal-Insulator Transition in Nonbipartite Lattices
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We reinterpret the Hubbard model in terms of doubly occupied sites and empty sites with an attrac-
tive interaction U whose pairing leads to the Mott-Hubbard transition. We develop a mean-field theory
for this pairing which in a triangular lattice at T 0 leads to a first-order transition from a spiral, incom-
mensurate metal to a commensurate insulator at U=5.27t where a charge gap (=0.085t) opens up.
%'e also discuss the eft'ect of fluctuations.

PACS numbers: 71.30.+h, 75.10.Jm

In this Letter we present some new results for the
physics of the Hubbard model' and the Mott-Hubbard
metal-insulator transition, especially on nonbipartite
lattices. Our discussion uses a reinterpretation of the
model in terms of doubly occupied sites (doublons) and

empty sites (holons), which carry opposite charges (with

respect to a neutralizing background). Then the Mott-
Hubbard transition can be viewed as arising from the
formation of bound, charge-neutral, pairs of doublons
and holons. Their binding energy is the gap for charge
excitations, i.e., the insulating gap. Our reinterpretation
leads us to reexamine the Hartree-Fock (H-F) mean-
field theory of the Hubbard model but with the in-

clusion of spiral SDW (spin-density-wave) states. We
find that it provides a useful, lattice-specific, zeroth-
order description of the Hubbard model for any U and

filling.
Using this theory, we derive some novel conclusions

about the Hubbard model on the triangular lattice with

nearest-neighbor hopping t (and generally in models
with no nesting of the noninteracting Fermi surface).
Specifically we find that in the half ftlled triangular lat-
tice at T 0, for small U the system is paramagnetic
metal; at a critical U U, ~

(=3.97t), it becomes a met-
al with an incommensurate spiral SDW, ~hose wave vec-
tor changes continuously as U is increased beyond U, ~,

until at U U„q=5.27t a ftrst order metal insula-tor-
transition occurs. A finite charge gap at approximately
0.085t suddenly develops and the system goes into a
commensurate, three-sublattice, 120 twist SDW state
(which is just the ground state for the classical triangu-
lar antiferromagnet), which is insulating and stable for
all U& U, 2. We argue that by considering the leading
Auctuation corrections about the mean-field approxima-
tion, one obtains the essential qualitative physics of the
Mott-Hubbard transition at finite temperatures, includ-

ing the distinction between Mott (paramagnetic) insu-

lator and the antiferromagnetic insulator.
The Hubbard model Hamiltonian on a general lattice
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A reinterpretation of this model in terms of doublons and
holons is achieved by making a particle-hole transforma-
tion on the up-spin species, and relabeling the operators
as c; 1 h, and c; l d; . The reference "vacuum" state

~
0) has an up-spin particle at every site i; h; ~

0)
creates a holon and d; ~

0) a doublon at i The d. own-

spin particle is obtained as (d; It; ) ~
0) S; ~

0), where

S; is the spin-lowering operator. In terms of these
operators, H can be rewritten as

H gt;&h;"h; —gt;jd;~dj+Ugd; d;
IJ IJ I

—Ugd d;h h;. (2)

Note that doublons have a site energy U, and holons and
doublons have an on-site attractive interaction U. The
deviation away from half filling, b, is given by 8=no
—n2, where n p and n2 are the holon and doublon densi-
ties, respectively. Without loss of generality we can
work in the ensemble where S, 0; since S, =(N/2)
x (I ttp n2) it follows that np = ( l +8)/2 and n2
=(l -b)/2.

First consider the noninteracting limit in this lan-

guage. Then holons and doublons with wave vector k
have energies epp =pp+tp and t.'2I, =@2—tf„where tk
—=gj t;,e' "' The che.mical potentials pp and jt2 are to be
adjusted to fix S, and 8. In particular, when S, is 0,
p2= —pp. The doublons and holons then occupy nonin-
tersecting regions of the Brillouin zone, separated by the
Fermi surface (in the original language). This state has
gapless charge excitations and is obviously metallic.

The eA'ect of turning on the attractive interaction U
between doublons and holons is to form pairs or
"charge-density waves, " which in terms of the original
variables correspond to xy (spiral) or z (linear) spin-
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z[Eokf (Eok ) +E2kf (E2k )] Xf Rk
k k

+NUf&p+ [(1 b)/2] ] Nppb, (3)

when f (x) is the Fermi function. The self-consistent
equations which determine bo and po are

2bo N ' g(Ubp/Rk ) [I —f (Epk) —f (E2k)], (4a)
k

np —n2 8 N 'g[f (Eok) f (E2k)].
k

(4b)

Consider the consequences of this description at half
filling for T 0 and large U. Then pp 0, both quasipar-
ticles have a gap, and bp= 2 [I —

2 gq(tg k
—tk) /U ].

The energy can be reexpressed as

Co/N= ——,
' gJ; [I —e "]= ——,

' [J(0)—J(Q)],
J

where J;J 4(t;, ) /U is just the Anderson superexchange
interaction. This is precisely the energy of the large-U
projected Hamiltonian in the presence of a classical
spiral SDW state (S; ) = —,

' e' ', with maximal spin

alignment of —,
' . The choice of Q that minimizes the en-

ergy makes J(Q) most negative within the Brillouin
zone. For any bipartite lattice with nearest-neighbor
(nn) coupling, the ground state is the Neel state, with

Q=Qp such that e ' = ~1 on the two sublattices.
For the triangular lattice with nn coupling, Q is any of
the six zone-corner vectors; e.g. , Qp=(4+/3a, O), and
gives a three-sublattice antiferrornagnetic state, with a
120 twist of the spins between the sublattice. In gen-
eral, the optimal Q may not be commensurate with the
lattice.

density waves. If this leads to long-range order, the
corresponding order parameters are (d; h; ) =(S; )

&De and

(1 —(h; h;+d; d;)) (S,') =icos(Q. r;) .

A coherent Bose condensation of holon-doublon pairs
into a single wave vector Q necessarily corresponds to an

xy spiral SOW. Global spin rotations of this state can
mix in spin ordering in the z direction but can never give
a pure z linear SDW. Clearly, Q is also the center-of-
mass (crystal) momentum of the pairs. In what follows,
we focus attention on spiral states.

The simplest description of the pairing process is the
BCS description. It is the same as the H-F treatment
of the Hubbard model which allows for xy ordering. For
a pairing order parameter with a single wave vector Q
(even if incommensurate), i.e. , a spiral SDW, the mean-
field theory can be implemented exactly. One gets
quasiparticles with energies Eok,

E2k Rk ~ [pp+ (tg k+ rk )/2—],
where Rk [[(tg k

—tk)-/2] +(Ubp) ]' . The mean-
field energy is

I
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FIG. I. (a) Magnitude of the ordering wave vector Q* in

units of Qo 4x/3 and (b) magnetization bo vs U/t The in-.
commensurate phase first occurs at U, l =3.97 (not shown),
the first-order transition into the insulating antiferromagnetic
phase occurs at U, 2 5.27. For U & U, l, bo is zero.

Consider the small-U limit. Then the BCS instability
sets in when 1 Ug(Q), where g(Q) is the "pairing sus-
ceptibility" which is the spin susceptibility. As is well

known for bipartite lattices with nn coupling, at half
filling, g(Q) diverges for Q Qp at T O. Hence the
ground state supports a nonzero bo for any finite U, no
matter how small. We find that Q Qp minimizes the
ground-state energy for any U. The quasiparticle ener-
gies, now given by Epk E2k (rk +U bp ) ' always
have a gap. The ground state is a two-sublattice antifer-
romagnetic insulator for all U & 0.

The situation for a nonbipartite lattice, such as the tri-
angular lattice, even with just nn coupling, is more in-

teresting. In this case, the Fermi surface at half filling
does not nest'o and g(Q) is finite at T 0 for any Q. At
half filling the Q at which g(Q) peaks [Q~ =—(0.73m/a, 0)
or its "star"] is different from the zone-corner wave vec-
tor Qp [(4x/3a, O)] which characterizes the pairing for
large U. Thus the pairing instability is to an incommen-
surate (spiral) SDW, and occurs at a nonzero U given by
U, ~ g '(Q~) 0.66zt, where z ( 6) is the coordina-
tion number.

How does the wave vector of the spiral state change
from Q~ to Qp, and the quasiparticle spectrum vary as U
increases from U, ~

to ~? A numerical solution of the
self-consistent equations and a minimization of the ener-

gy with respect to Q leads us to the results shown in Fig.
1. There is an upper critical U, 2 0.86zt such that for
U, ~

(U& U, 2, Q, the optimal Q changes continuously
from Q~ to Qp. In this range of U, there are pockets in

the zone where Epk or E2k is negative. Thus, gapless
charge excitations exist and this is a spiral metallic
phase.
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Exactly at U, 2 there is a first-order metal-insulator
transition. The wave vector Q* jumps from approxi-
mately 0.88QO to Qn, the magnetization jumps from 0.34
to 0.39, and an insulating gap at approximately 0.085t
suddenly opens up. Beyond U, 2, Q* sticks at Qn and the
charge gap has the value Ubo —2t—this is the three-
sublattice antiferromagnetic insulating state.

With appropriate values for Q*, U, ~, and U, 2, this
scenario can most likely accommodate general lattices
and general couplings t;~. For example, in the case of the
square lattice with a small next-nearest-neighbor hop-

ping,
" t2, we find again a paramagnetic metal for small

U, then an incommensurate metal for intermediate U,
and an antiferromagnetic insulator for large U.

Next consider what happens at finite temperatures.
As is we11 known, on bipartite lattices, at small U, H-F
theory is a good guide. At T, (U) given by U=g '(T, ),
a pairing instability occurs accompanied by a formation
of quasiparticles with a charge gap and long-range Neel
order. Thus, there is one transition, from a paramagnet-
ic metallic phase to an antiferromagnetic insulating
phase. ' As long as T, (U)/zt((I, the transition is well

described by mean-field theory. '

But this picture is obviously incorrect for large U. In
this case, for U&&zt, the doublons and holons will form
real-space ' bosonic pairs ' with a binding energy of or-
der U. Now there are two temperature scales: (1) an

upper temperature scale T„, primarily determined by U,
at which the bosons form and a charge gap opens up;
and (2) a lower temperature Tt, determined by the hop-

ping amplitude for the pairs, at which the pairs Bose
condense. In spin language, the formation of doublon-
holon pairs is simply the formation of local moments and
their hopping amplitude is the exchange energy of the
spins; their Bose condensation results in long-range mag-
netic order.

Mean-field theory leads to a transition' at T„and de-
scribes the physics associated with it. For large T, the
(noninteracting) doublons and holons are nondegenerate
with 2~,. ;,(Q) —1/T leading to the H-F instability at
T=U. For T&&U, charge excitations have a gap -U.
Thus, the region TI & T & T„corresponds to a paramag-
netic insulating' phase. For T & TI, after the Bose con-
densation occurs, one has an antiferromagnetic (or
spiral) insulating phase. It should be noted that in 2D tt
is always zero. .

The processes that are responsible for the distinction
between T„and TI are contained only in the fluctuations
about mean-field theory. Given one H-F solution, other
degenerate solutions can be obtained by performing
global-spin rotations. Hence there are long-wavelength
boson modes which have low energies —these are the
spin waves; the hopping amplitude of the bosons deter-
mines the spin-wave stiA'ness constant Jsw. These spin
waves destroy long-range order at any finite temperature
in 2D and for T ) Tt (determined by Jsw) in 3D and at

T=O, reduce the value of bn from its mean-field value. '

There are two limits in which Jsw is easy to calculate:
In the limit of U&&zt and T 0, Jsw is proportional to
4t /U. In the other limit, that of small U in a bipartite
lattice, Jsw-Ugn, where gn is the pairing coherence
length, which is very large. In this case TI & T„, which
is in fact responsible for there being only one transition.
A precise elucidation of the details of the phase diagram
and whether or not T„corresponds to a true transition
needs a careful and involved calculation of Jsw and of
the fluctuation effects for intermediate values of U/zt,
which we will report in a separate publication.

We have also explored the mean-field theory outlined
above for 8 nonzero, and find that it gives a useful
zeroth-order description of the physics of the Hubbard
model, for all U and 8. In particular, for large U, and
8&0, we find a spiral metallic phase, ' ' which evolves
continuously into a ferromagnetic phase for b»t/U.
The results are very similar to what we have obtained us-

ing the Sch winger-boson-slave fermion mean-field
theory. Of course, the "elementary" excitations of
mean-field theory are not weakly interacting, as is evi-
dent from the fluctuation corrections. For example, for
U 00 and b & 0 the "spin-flip bosons" b; =d; h; hav—e a
hard-core repulsion between themselves and with the (re-
normalized) holon quasiparticles, and spin fluctuations
lead to interactions between the holon quasiparticles.
Thus, questions as to whether the holons can form Coo-
per pairs leading to superconductivity, 2' and how
particle-hole fluctuations of the holon Fermi sea des-
troy the ferromagnetic state for finite U and large 8,
etc. , are to be addressed as questions of second-level in-
stabilities due to the interactions between the elementary
excitations of the Hartree-Fock theory. We will discuss
such issues elsewhere.

In summary, we have shown that a reinterpretation of
the Hubbard model provides some new insights into the
physics of the Hubbard model and the metal-insulator
transition. We have also shown that a H-F mean-field
theory for pairing (or spiral SDW) can be implemented
to yield meaningful results (especially when one includes
fluctuation eff'ects). It would be interesting to look for
spiral SDW states and other consequences of our theory
in conventional strongly correlated systems showing the
Mott-Hubbard metal-insulator transition.
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