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Physical Mechanisms Underlying Neurite Outgrowth: A Quantitative Analysis of Neuronal Shape
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We show that —over a range of length scales r—the shapes of quasi-two-dimensional retinal neurons

are fractal objects, and hence may be quantitatively characterized in part by their fractal dimension df.
We analyze the shapes of numerous retinal neurons, both in vivo and in vitro. The neurons in vivo are
found to have a fractal dimension df of 1.68+ 0.15. We also propose an explanation of certain stages of
neuronal shape development in terms of a diffusion-limited-aggregation model, which predicts

df 1.70+ 0.1.

PACS numbers: 87.10.+e

Neurons in the central nervous system, and the retina
in particular, have a characteristic morphology —a cell
body from which radiate processes (neurites) termed the
neuronal arborization. ' The ability to identify a neuron
based on the qualitative shape of its arborization has
long been recognized. However, meaningful quantitative
analyses remain elusive. The shape attained by a neuron
is thought to result from environmental as well as genet-
ic influences. Many local environmental effects, such as
growth factors and electrical charge, are known to
influence these directional choices.

The critical question is how these "local" effects result
in the complex branching pattern of a neuron, in contrast
to the behavior of, say, a phototropic plant like Phy-
comyces which adopts a br anchless structure when

grown in the presence of a point source of light. Com-
plex branching patterns in other kinds of growth are
based on diffusion-limited processes, and are quantita-
tively described using fractal analysis. The diffusion-
limited-aggregation (DLA) model has recently been
shown to model both outgrowth and aggregation process-
es 8,9

A fractal shape can be completely described by a sin-

gle parameter, df, the fractal dimension (the mass of a
fractal object inside a radius r scales as r I). Objects in

nature are fractal over a finite range of length scales r,
typically a factor of 10 or so. Here we apply fractal
analysis to retinal neurons in vivo and in vitro. We find

that neurons are fractal objects over roughly a decade in

r. We also suggest three possible diffusion-limited pro-
cesses that could be related to the fractal shapes ob-
served.

Photographs of the neurons were digitized with a video
camera, using a grid of 2' 65536 pixels. The fractal
dimension df of the digitized patterns was determined as
follows using the box-counting method. First we com-
pute the center of gravity and radius of gyration. Then
we take as the origin one point within a square centered
at the center of gravity and with a side equal to the ra-

dius of gyration. Every point on the structure, within

this square is chosen as a local origin and the cluster
mass (number of occupied pixels) within a distance r of
this local origin is calculated. Averaging over all possi-
ble choices of local origin, including the empty sites, we
find the averaged cluster mass M(r) scales with r as

M(r) -r'~.

Thus the slope of a double logarithmic plot of M(r)
against r gives a quantitative value of df. We also used

the correlation method to calculate df and obtained simi-

lar values of df. Both the box-counting and correlation
protocols have been successfully applied to a wide range
of fractal objects. We have chosen the retina as a
model system because it contains many neurons with

unique dendritic arborizations that lie primarily in two
dimensions (with an aspect ratio of approximately 10:1).
This both facilitates analysis (minimizing complicating
effects arising from growth in a third dimension) and al-

lows comparisons to culture conditions. Our analysis of
retinal neurons in vivo in adult animals shows neurons

with well developed axons and dendrites. In contrast,
our in vitro studies show neurons where axon and den-

drite growth is not yet well developed.
(i) In vivo. —Figures 1(a) and 1(b) show retrogradely

labeled P ganglion cells from the cat retina. ' Figures
1(c) and 1(d) are the corresponding double logarithmic
plots of M (r) against r, using box counting, which—
over a tenfold range of r values —are as linear as most
fractal objects in nature. The falloff at large values of r
is customary for all fractal shapes, and corresponds to
the fact that for su%ciently large r some shells are larger
than the entire pattern. From the slopes of the linear
portions we estimate df 1.71 and 1.69 for Figs. 1(c)
and 1(d), respectively. Averaging over all the patterns
of eleven neurons in vivo, we find df 1.68 ~ 0.15 by box
counting and df 1.66+ 0.08 by the correlation method.

(ii) In vitro. —As a first step in trying to analyze the
relative contributions of electrical, trophic, and viscosity
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FIG. 1. (a), (b) Digitized images of retrogradely labeled P
ganglion cells in a cat retina (Ref. 10), taken at early and later
stages of development, respectively. The scale bar is 10 pm.
(c),(d) The corresponding fractal analyses.

factors in producing these fractal patterns, we studied

neurons which developed in a radically modified environ-

rnent: retinal neurons grown under known conditions in
vitro. Cells were prepared and maintained in culture ac-
cording to Hausman et al. " Figure 2(a) is typical of one

of the eleven neurons analyzed using the methods de-

scribed above. The average value obtained for df of the
in vitro neurons is 1.43 ~ 0.1 by box counting and
1.39 ~0.1 by the correlation method [Fig. 2(c)]. These
in vitro values are significantly different from those ob-
tained in vivo.

The in vitro neurons are truly two dimensional, while

the in vivo neurons have some three-dimensional charac-
ter which complicates the interpretation in terms of mod-
els. Moreover, the analysis of all neuronal patterns is

more complex due to nonuniform branch width (the pat-
terns present a decreasing branch width as one goes
away from the cell body). A similar effect occurs in

chemical dissolution patterns, where one finds a de-

creasing branch width as one moves away from the injec-
tion point. ' We corrected for this effect by forming the
"skeleton" of the pattern [Figs. 2(b) and 2(d)], remov-

ing all points from the digitized image that are not

necessary for the global connectivity. ' Analysis of the
skeletized images yielded more appropriate values of df
than those found for the original patterns, since skeletiz-
ing eliminates the cell body (df 2). Using the correla-
tion method which is relatively insensitive to the cell
body, we found almost identical values of df for the orig-
inal image and the skeleton, thus demonstrating that the

parameter df is fairly insensitive to pattern "details"
such as branch width.

Significantly, we find using both box counting and the
correlation method that the 22 neurons analyzed are
fractal objects. For thein vivo neurons, df 1.68~0.15
by box counting. This value for the fractal dimension is

F&~. 2. Digitized image of a chick retinal neuron in vitro.
Retinal cells were obtained, cultured for 14 d, and photo-
graphed according to Ref. 11. (a), (b) Digitizations of the neu-
ron and of the "skeleton" (see description in text) of the same
neuron, respectively. The scale bar is 10 pm. (c),(d) The cor-
responding fractal analyses.

the same as that found for the diffusion-limited-ag-

gregation model, a model that has been found to describe
a vast range of "diffusion-limited" phenomena.

The DLA model incorporates two features that might

apply to neurite outgrowth at the molecular level: (i)
The factors controlling the growth are those inherent in

a diffusion equation, and (ii) the growth proceeds by sto
chastic growth rules. Concerning point (i), we note that
at least three diffusion-limited physical processes which

may result in neurons having fractal shapes are electrical
fields, chemical gradients, and viscosity differences. Two
of these, electrical fields and chemical gradients, are
known to modify the shape of neurons. '

To explain point (ii), we show in Fig. 3 the first few

steps in the DLA growth process. The key point is that
the growth follows rules that faithfully represent the
solution of the equations for a diffusion-limited process,
including the presence of stochastic noise It has rec. ent-

ly become established that the resulting clusters accu-
rately describe a class of growth phenomena in which the
diffusion equation or Laplace equation V p 0 controls
the essential physics. Thus growth phenomena governed

by chemical gradients (in which case p is the concentra-
tion), by electrical gradients (is is an electrical poten-

tial), or by a difference in viscosity between the inside
and outside of the pattern (s1 is the pressure) are all be-
lieved to be described by the DLA model. ' It is known

that gro~ing neurons respond to chemical gradients and
electric fields, and it is also known that there is a
difference in viscosity between the neuronal cytoplasm
and the surrounding intercellular matrix. For this
reason, it is not implausible that DLA might represent a
zeroth-order description of neuron growth.

The value of df for in vitro neurons is not as easily at-
tributable to the DLA model. Obviously, in vitro envi-
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FIG. 3. Schematic illustration of the first steps in the gen-

eration of a DLA cluster by solving directly (on a square lat-

tice) the Laplace equation V p 0, where p represents the con-
centration, electrical potential, or pressure (if growth phenom-

ena are governed by chemical gradients, electrical gradients, or
a difference in viscosity between the inside and outside of the
cell, respectively) (Refs. 8, 9, and 21). At time t 0 we place a
seed particle at the origin. We calculate the solution to the La-
place equation everywhere, with the boundary conditions that

1 on the seed and p 0 on a large circle that surrounds the

system. We assign probabilities to the perimeter sites of the

seed particle chosen in proportion to the value of Vp, and parti-
tion the unit interval such that each probability corresponds to
one segment of that interval. Next we choose a random num-

ber between 0 and 1. The value of the random number chosen
determines which site will grow; in the example shown, this is

the site labeled pI. We now have a two-site cluster. This pro-
cess is iterated; i.e., the Laplace equation is solved again, a set
of six probabilities for the six perimeter sites is placed in 1:1
correspondence with the unit interval, a new random number is

chosen (in this case 0.6), and the corresponding perimeter site
is grown (in this example, site 4). By this rule, one accurately
obtains diffusion-limited aggregates of large size.

ronmental influences would be considerably modified
from those in vivo. If such environmental factors
influence the fractal nature of neurons, then it is quite
reasonable to expect changes in df as these factors are
changed.

Considerable further study is needed to see if a partic-
ular df value can be associated with a particular cell type
in terms of its anatomy, physiology, or developmental
state. To properly address this intriguing possibility,
fractal dimensions ~ould have to be calculated for a
large number of identified cells to determine if there is a
statistically significant relationship between functional
cell type and fractal dimension. An important step in

this direction has been taken by Amthor, who analyzed
the fractal dimensions of directionally selective retinal
neurons. '

In summary, many biological phenomena appear to be
fractal, '"'5 including for example the chick embryo cir-
culatory system, structure of the bronchial tree, '

and the human retinal circulatory system; the present
study is among the first to systematically partly charac-
terize a biological structure, the fully developed retinal
neuron in vivo, using fractal mathematics (using both
box counting and the equivalent correlation function
method). Moreover, the reproducibility of the numerical
values for df of fully developed neurons in vivo suggests
that df is not a parameter devoid of physical content;
indeed, for nonbiological objects, accurate measurements
of df have led to subsequent physical understanding. '

After completing this work we learned that Smith et
al. also measured df for unspecified vertebrate central-
nervous-system neurons in culture. Our study is pri-
marily towards the comparison of measurements in vivo

(in the adult animal) where the environment in which
the neurons grow is complex and measurements in vitro
where the environment through which the neurons grow
is considerably simpler and more defined. In these in
vivo studies, which we believe to be the first to be report-
ed, we find a df of 1.68+ 0.15 and we build an analogy
with DLA. Therefore, our work is complementary to
that of Smith et al. ; ho~ever, we go on to suggest that a
known growth process (DLA) may in part underlie this

value of df. Our present work presents quantitative
descriptions of neuronal shape, and suggests an underly-

ing physical basis. This should allow subsequent
mathematical analyses of the underlying biophysical pro-
cesses.
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