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It is shown that in a simple model of surface dynamics of growing 3D quasicrystals, growth proceeds

through the nucleation of steps whose heights h, diverge like (Au)

~!53 as the growth-driving chem-

ical-potential difference Au— 0. This large step size leads to very low growth velocities V,
xexpl{— + [Au (T)/Aul¥}. Au.(T) defines a rounded kinetic roughening transition and is nonuniver-
sal. For “perfect-tiling models” I find Ay (T) « T =2 at high temperatures T, which fits recent numeri-
cal simulations, while in models with bulk phason Debye-Waller disorder, In(Ay.) & —+/T. The grow-

ing interface is algebraically rough.
PACS numbers: 61.50.Cj, 61.50.Em

Quasicrystals' are intriguing because they force us to
consider afresh all of the concepts that have been
developed for periodic crystals. This is particularly true
of surface roughening.?"' In conventional periodic 3D
crystals, every facet has a finite roughening temperature?
Tgr, while in three-dimensional quasicrystals Tg is
infinite. ’-1°

In this paper, I describe the behavior of a simple
dynamical model for the growth'' and kinetic roughen-
ing of quasicrystals. This model describes facets in the
nonequilibrium case in which the quasicrystal is growing
and hence the facets are moving at some finite velocity
V. I find many important differences between a moving
quasicrystal facet and a moving crystal one.

(1) The quasicrystal grows by nucleating steps on the
surface whose height A; is a diverging function of the
quasicrystal-fluid chemical-potential difference Au:
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where J is a microscopic interaction energy, a is an
atomic length, and Au.(T) will be defined below. The
exponent % is universal for all quasicrystals whose ratio
of fundamental incommensurate lengths is a quadratic
irrational.'> In contrast, crystal surfaces below Tg
grow '3 by nucleating steps of height one lattice constant,
regardless of Au.

(2) This large step size leads to slower growth of the
quasicrystalline facet, with growth velocity
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whereas in crystals'?
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(ignoring algebraic prefactors).

(3) The quantity Au.(T) is nonzero up to arbitrarily
high temperatures in quasicrystals, while in crystals'3
Ap.(T) vanishes at and above the equilibrium roughen-

ing temperature Tg. In quasicrystals, Au.(T) is very
sensitive to *“phason Debye-Waller disorder”'*'> in the
bulk. In “perfect-tiling” models with no phason Debye-
Waller disorder,
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for kgT>J. This result is supported by recent numeri-
cal simulations'® (see Fig. 1). For models which allow
phason Debye-Waller disorder, and again for kg7 >>J,

A (T) xexpl— (kg T/J)'2x0(1)]. )

Au(T)=

(4) The height-height correlation function Cj(r)
=([h(r) —h(0)]1?) [where a(r) is the height of the inter-
face at r, and the brackets denote a thermal average] ex-
hibits two crossovers:

Co(®) xIn(r/a), r<é&eq(T), (5)
Cn(r) xInléeq(T)/al, Ex(Ap,T)>r>E(T), 6)
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FIG. 1. Plot of the “kinetic roughening threshold” Au.(T)
vs T "2 where T=ksT/J is the reduced temperature in the
perfect-tiling simulation of Ref. 10. The theoretical prediction
presented here Au (T) T ~3? is illustrated by the straight
line, while the points represent the results of the simulation.
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where a is a microscopic length. Here y is the universal
exponent defined in Ref. 16 for a rather different growth
model; its numerical value is'” y = 0.4. I find

1/2
kgT kgT
£eq(T) =a 7 ln[ 7 ] €Y
for perfect-tiling models, while
Eeq(T) =aexpl(kgT/7)V*x0(1)] )

for models with phason Debye-Waller disorder. In both
cases

ExeVy !, (10)

so the small quasicrystalline growth velocity given in Eq.
(2) manifests itself in a long surface correlation length
as well. In contrast, crystals exhibit the crossover at &eq
only in a narrow range of temperatures below the
roughening temperature Tg.

These results are expected to apply for any facet nor-
mal to an incommensurate direction in any incommensu-
rate system, quasicrystalline or not, in which there are
precisely two fundamental incommensurate lengths
whose ratio is a quadratic irrational. The results do not
apply for growth of a facet normal to a commensurate
direction, even in systems which are incommensurate in
other directions. For example, these results do not apply
for facets parallel to the tenfold planes of decagonal
quasicrystals,'® but do apply in those systems for facets
of any other orientation.

ll\;[y model is a time-dependent Ginzburg-Landau mod-
el,

d,h=—-T6H/6h+n, (11)

where I is a kinetic coefficient and 7n(r,t) a zero-mean
Gaussian white noise with

(e, t)n(r',t'))=2TkgT6(c—r')6(t —1¢') .

This choice of n guarantees that in the equilibrium
(Au=0) case the distribution of % relaxes back at long
times to the equilibrium distribution for the Hamiltonian
H, where

H(h)=fd2r[;—1<|w,|2+V(h)—Auh], (12)

with V(h) =XGVscos(Gh). Here the sum is over all
G’s that can be written Gp,m,=Go(m,+m,0), with m,
and m; integers and G the wave number of one of the
bulk reciprocal-lattice wave vectors orthogonal to the
surface. Here o is the ratio of incommensurate lengths
in the quasicrystal, and is assumed to be a quadratic irra-
tional. '2

First, I will derive the static, equilibrium (Ay=0)
properties of this model; then, I will treat the dynamics
of the nonequilibrium Au=0 case.

In the equilibrium case (Au=0) the linearized
renormalization-group (RG) recursion relations for the
Vs's follow from standard treatments? of the sine-

Gordon model:

V
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where Vg=V/ksT. Since the Vg’s suppress fluctua-
tions of the interface, it will remain smooth if any of the
V¢’s renormalize to infinity. Since quasicrystals have
Vg's at arbitrarily small G, this will always happen;
hence’*® there is no roughening transition.

The V; that first renormalizes to O(1) dominates the
physics; I will define its wave vector as G.(T). From
(13), it follows that a given Vg =0(1) at a length scale

to=alVe(l=0)17%" (14)

where Ag=2 —kpTG?/47K and a is a microscopic length
of order an interatomic distance. Physically, &g is the
length scale at which V¢ starts to have an appreciable
effect on fluctuations of the interface. The smallest &g
(=¢&q) at a given temperature is, therefore, the length
scale above which the equilibrium interface appears
smooth; for L <&, the interface will be logarithmically
rough. This is the crossover at &q described by Egs. (5)
and (6). The value of G at which &g is minimized is
G.(T). To proceed, I need to specify the bare V(I
=0)’s. I will consider two classes of models here.

In the first, the perfect-tiling models,*%%!0 the
quasicrystal-liquid interface is modeled by first removing
the tiles from a semi-infinite region of a perfect quasi-
crystalline tiling of space. Surface configurations are
now generated by adding (or removing) tiles to (or
from) this interface, following the rule that tiles are al-
ways added only in places where tiles were present in the
original infinite tiling. Different surface configurations
are now assigned different energies according to some lo-
cal rule (e.g., by counting “broken bonds”*%), and the
integrfl'gcc evolves by conventional Monte Carlo dynam-
ics.”

The long-distance properties of the interface in this
model can be shown'? to be described by the Hamiltoni-
an (12) and the dynamical equation (11), with

VoG(%

sTm3
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kgT
for the choice of m, and m, that gives the largest
VG(m,m, With a G(m\,m,) within a few factors of o of a
given G. Here Vo=Vg, and Go~a ~!, where a is the tile
size. Using this in Eq. (14), treating G as a continuous

variable (which only leads to errors of a few factors of
o), and minimizing over G gives

/[m[’“f”m (16)
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and Eq. (8) for &.q(T), with J=Ka>.

My second model, the phason Debye-Waller disorder
model, actually applies to any case in which the
VG(m,my’s in the Hamiltonian equation (12) vanish fas-
ter than expl—c |G . (m,,m;)|] as the “phason momen-
tum” G, (m;,my)=Go(m; —m o) associated with G
goes to infinity. This behavior is precisely what is ex-
pected for systems with thermally excited phasons'*'® in
the bulk. Such a dependence of V; on G, guarantees
that the V’s will be very small at small G, since any
small G necessarily has a large G, associated with it. In
particular,® |G .| >0(G§)x|G|™". It follows that
for small G, Vg <Vge for some constant C of
order unity.

The RG shows that any such model behaves at long
distances like one with

V(1 =0) =V,e ~CCYI6! (17)

at small G, again for the right choice of (m,m;) and
with C of order unity. Equation (17) for V(I =0) can
now be used in Eq. (14) for &. Again, the minimization
of &g over G can be performed essentially treating G as a
continuous variable, since there are guaranteed to be
some G’s within a few factors of o of the continuous
minimum. This yields

G (T)=2Q2xK/3ksT)'?, (18)

and Eq. (9) for &, again with J=Ka .

Let us now turn to the Au#0 dynamics.

In crystals described by the kinetic model Eq. (11),
growth proceeds via the nucleation and growth of steps
on the surface.!> If the step height k, is equal to the
spatial period a of the crystal, a circular step of radius
will lower the energy of the system by E|= —AuAh;
= —nr2aAu. Choosing the step height to be a was cru-
cial in that such a step leaves the periodic potential V' (k)
unchanged.

The Hamiltonian does change on the step perimeter P,
leading to a step energy E,=¢,P =2re,r, where the step
energy per unit length ¢ depends on K and V (k).

Summing the perimeter and areal energies gives the
energy of the nucleated step, E;(r) = — nrAua+2ne,r.
This energy has the canonical form for a nucleating
droplet,'* with a “nucleation barrier” E,=re?/Aua
equal to the maximum of E;(r). In simple dynamical
models like Eq. (11), thermal tunneling over this barrier
occurs at a rate '’

e}

B AuakBT

o« _ Ee =
y < exp kaT exp

’

which vanishes very rapidly as Au— 0.

How is this picture modified for quasicrystals? At the
very first step: No matter what the step height A, the
potential ¥ (k) cannot be zero [choosing the zero of po-
tential to be the minimum of V (k) over all Al, since
V(h) is not a periodic function of A. Thus, in addition to
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the Au term, the areal-energy change will always have a
piece proportional to V(h,). Furthermore, if the inter-
face before the step was sitting in a favorable (i.e., fairly
low-energy) local minimum of V(k), then any step h;
that only carries the interface to a nearby minimum will
in general lead to V(h;) > Auh;, so the step actually
raises the energy by an amount proportional to the step
area, rather than lowering it. Such a step can clearly
never grow to infinity. The only steps that do grow are
those with h, large enough that V (k) < Auh;, for only
then can such a step eventually lower the system’s energy
as it grows laterally. The smallest nucleation barrier will
occur for the smallest A, for which this condition can be
satisfied;'® hence, steps of this height will nucleate fast-
est and dominate the growth.

The dependence of A, on Ay is universal for all models
with quadratic irrational o’s. Keeping only the two larg-
est terms in the potential at a given temperature T, |
have

V(h) = —Vg. ks TicoslG . (T)h]+coslG.(T)h/]} ,
(19)

where I have specialized to the case o =1 and ignored
unimportant factors of order unity.

The problem of minimizing this potential is readily
seen to be equivalent to the problem of finding an integer
m that is as near as possible to being an integral multiple
of 7. Fibonacci numbers are the best choice.?® Choosing
m =F}, the kth Fibonacci number, one can readily show
that

k (=1)kc 7k (=D

. Fi— 1472 = Fy— SF,
where the second, approximate, equality holds for large
k or Fk.

Writing h =Qn/G.)Fy+¢ with €<, expanding the
cosines in (19), taking advantage of the facts that Fj—,
is an integer and 1/Fy— 0 as Fy— oo, and minimizing
over ¢, | obtain

(20)

v, ksT
Vi) ~—=" x0(1)
Fi
2-—
= [ G.h VGthTXO(l) . @n

The optimal step size A; is that value of & for which this
first becomes < Auh;. Thus, it is the first Fibonacci
number multiple of 27/G.(T) larger than h., where

Vo ks T/G2hE =Auh, . (22)

Since successive Fibonacci numbers differ only by factors
of 7, hy; will be within a factor of 7 of the solution A, of
(22); using this and

G2~ (K/kpT) xlogarithmic factors ,
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I arrive, up to logarithmic factors, at Eq. (1) for A, with

’7 k T 3/4
Au(T) =587 | K (23)
& | *aT

To calculate the nucleation rate I need the nucleation
barrier. The energy gain due to nucleating the step is

E\=—Auhr*x0(1). (24)

I still need the step energy per unit length ¢;. Note that,
since h;>>a, a step large compared to the microscopic
lattice constant must be taken. Such a step consists'® of
a series of smaller steps of height 27/G.(T), with total
step energy per unit length

€ (hy) =h (KVG ks T)*x0(1) . (25)

The total energy of a step is therefore given, up to fac-
tors of O(1), by

E(r)=¢,(hy)r —Auhgr?

=h,[r(KkgTVs (1)) "> — Aur?l. (26)
Maximizing this over r gives the nucleation barrier
5 4/3
KkgTVg (1) Ap(T)
Ey=—————h;=kT AL ,
Au Au

where I have used Eq. (1) for h; and ignored factors of
o).

From E,, the step nucleation rate follows from
yexp(—Ey/kgT). )

Inserting the expressions derived earlier for V; and
G.(T) in the two models (phason Debye-Waller and per-
fect tiling) into Eq. (23) yields Egs. (3) and (4) for Ap..

Once a step has grown substantially larger laterally
than the nucleation radius r., it subsequently grows radi-
ally with a velocity ¥ which is proportional to Au. This
type of growth model falls into the category of polynu-
clear growth (PNG) models, which have been studied
extensively for crystals.!”?!2 Combining the results of
these studies with those obtained here, I find that the
growth velocity of the interface is given by

4/3
(2]

Standard results'”?"2? for the PNG model also imply
the algebraic form for the height-height correlation func-
tion given in Eq. (7), with?'

1/3
|4
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y ]
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