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Equivalence of the Dimer Resonating-Valence-Bond Problem to the Quantum Roughening problem
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A geometric mapping of dimers on a square lattice onto surfaces of a 3D crystal is constructed. The
mapping transforms the dimer-RVB (resonating valence band) problem to the quantum roughening
problem: Low-energy excitations correspond to the crystal surface Auctuations; holes are represented by
screw dislocations. A phase diagram is discussed and the existence of a quantum-limit state with gapless
excitations is demonstrated using the results obtained previously for the roughening problem.

PACS numbers: 71.30.+h, 75.10.3m

Recently the quantum dimer problem was discussed'
as a candidate for a system having a quantum-liquid

ground state. Although a number of approaches have

been developed to solve the problem, the physics con-
tained in it remains far from being clear. Two main

(and mutually related) questions to be answered are the
following: (a) Is the ground state ordered or disordered?
(b) Is there a gap in the low-energy excitation spectrum?
Here I consider the dimer problem on a square lattice
and show that it can be mapped exactly onto the

roughening problem for a specially chosen 3D crystal.
(For dimers on a hexagonal lattice such a mapping also

exists, see Fig. 1.) The possibility of this mapping seems

to be very attractive since our understanding of the

roughening problem is far deeper than of the dimer one.
The constructed mapping is purely geometric, so the
method can be applied to both quantum and classical
versions of the dimer problem. The ordered (crystalline)
and disordered (liquid) states of the dimer problem are
identified with the smooth and the rough states of a fluc-

tuating surface in the 3D crystal roughening problem

(respectively). Thus low-energy excitations of the dimer

problem are found: They correspond to long-wavelength

fluctuations of the corresponding crystal surface (com-

pare with "resonons" ).
For quantum dimers on a square lattice Rokhsar and

Kivelson demonstrated the existence of "topological sec-

(b)

FIG. l. Mapping of dimers on a hexagonal lattice to a sur-

face of a cubic crystal. (a) A hexagonal lattice with dimers
covered by 60 rhombi. (b) A piece of a surface of a 3D cubic
crystal corresponding to the rhombic tiling. The broken lines

show faces of cubes which are either invisible or absent in the

tiling (a).

tors" described by two winding numbers. In a recent
work IoA'e and Larkin introduced dipole momenta of di-
mers and found a conservation law for the density of di-
poles. Within the approach presented here these results
acquire a clear meaning. Both the winding numbers and
the macroscopic dipole momentum correspond to the
average slope of a crystal surface obviously conserved by
all local Hamiltonians.

Let us start by constructing a mapping of planar di

mer conftgurations onto surfaces of a 3D crystal. It is

well known that any configuration of dimers can be
equivalently represented as a tiling of the square lattice
by 2&1 dominos covering adjacent plaquettes. It will be
convenient for us to work with dominos instead of di-
mers. First of all, we define a 3D crystal such that a cer-
tain class of its surfaces is in one-to-one correspondence
with planar configurations of dominos. As a basic con-
stituent of the crystal we use the polytope shown in Fig.
2(a): Its triangular faces are perpendicular to the basal
(x,y) plane, while other (rectangular) faces form the
45' angle with it. Identical polytopes are arranged in

2D layers parallel to the basal plane. The layers are
placed one upon another as shown in Fig. 2(b). Po-
lytopes in odd layers are related with those in even ones

by the 90' rotation around the z axis and a proper shift.
Notice that the surfaces of adjacent layers are mutually
complementary and touch each other perfectly (an emp-

ty space between neighboring layers is shown in Fig. 2
only for convenience). A unit cell of a crystal so defined
can be chosen as any pair of adjacent polytopes having a
common face.

Let the whole space be tiled periodically as described
above. Choose an arbitrary infinite surface having a
one-to-one projection on the basal plane. Remove all po-
lytopes which are strictly above the surface and view the
boundary of the region containing a11 remaining po-
lytopes along the z axis (or project this boundary on the
basal plane). Clearly, we obtain a tiling of the plane by
dominos, since a11 triangular faces project into segments,
while rectangular faces project into the 2x1 dominos.
Thus we see that any surface everywhere transverse to
the z direction generates a domino configuration in the
basal plane.

Now, we are going to show that this transformation is
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(a) The basic polytope. (b) A 3D crystal consisting

of basic polytopes arranged in layers. A separation of the lay-

ers is introduced for clarity.

FIG. 3. (a) Arrows are placed on dominos so that they point
from white vertices to black ones on horizontal dominos and
from black vertices to white ones on vertical dominos. (b) Five
rules defining a relation of integer numbers on neighboring
dominos. (c) Three (of twelve) minimal closed paths to be
considered for verifying the self-consistency of the rules (b).

reversible, i.e., that each configuration of dominos can be
viewed as a projection of a crystal surface described
above. As a first step we place arrows on the dominos.
Consider odd and even (white and black) sublattices of
the basic square lattice. ' These two lattices generate an
arrow on each domino according to the rule which is
clear from Fig. 3(a). After corresponding polytopes will

be constructed the geometric meaning of the arrows will

be revealed: The arrows will indicate the steepest down-
ward directions on the faces of the polytopes.

Next, we attribute integer numbers to arrowed domi-
nos. These numbers will have a geometric meaning of a
number of a layer which the corresponding polytope be-
longs to (see Fig. 2). The numbers are calculated recur-
sively: After the number is known for some domino it
can be found for all its neighbors using the rules (i)-(v)
connecting the numbers on adjacent dominos [see Fig.
3(b)]. Clearly, given a number for one domino, all other
dominos in the plane can be reached step by step using
these rules, so, finally, all dominos receive their numbers.
The only thing we have to check is the self-consistency of
this procedure. Imagine that we go along a closed path
and each time when coming from a domino to a neigh-
boring one we calculate a new number using the rules
shown in Fig. 3(b). Is it possible that after returning to
the domino we started with we find a number different
from that which we had at the beginning? To make sure
that this cannot happen one has to consider only circular
paths of minimal size, because any other path can be
decomposed into a number of minimal ones. Minimal
paths can include three or four dominos; hence their
number is finite: In total there are twelve such paths [as
an example, three of them are shown in Fig. 3(c)l.
Therefore, the absence of a contradiction can be verified

by inspecting all of these twelve paths. After doing this
we find that the integer numbers can be attributed to ar-
rowed dominos unambiguously.

Finally, starting from any domino configuration we ar-
rive at arrowed and numbered dominos. If the numbers
and arrows are taken as indicating the polytopes' layer
labels and the directions of slopes of their faces (respec-
tively), then the construction of a crystal surface be-
comes straightforward (see an example in Fig. 4). Note
that the only freedom in the described procedure is relat-
ed with the choice of black and white colors of the two
sublattices used to put arrows on dominos. Two possible
orientations of arrows yield two different crystal surfaces
which are mirror images of each other, where the mirror
plane is parallel to the basal plane.

Now, after the mapping is obtained, we can view the
Hamiltonian for dimers on the basis of the roughen-
ing problem language. The "kinetic" term
—J( I II&& I

+ H.c.) describes a polytope sticking to (re-
moving from) the surface, depending on the orientations
of the arrows on the dominos corresponding to the di-
mers in the brackets. The "potential" term
PV(Ill)&ll I+ I

=)& I) gives an energy of an atomic
step. This term provides equal amplitudes for both
orientations of arrows on the dominos.

Let us discuss a phase diagram of the problem by
making use of the results found for the quantum
roughening problem. It is convenient to introduce in the
Hamiltonian two new terms relevant for the roughening
problem:
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(a)

FIG. 4. (a) Dominos arrowed and numbered according to
the rules shown in Figs. 3(a) and 3(b). (b) The corresponding
piece of a 3D crystal. A geometric meaning of numbers and
arrows is clear: They correspond to layer numbers and slopes
of rectangular faces.

Here vertical (horizontal) arrows correspond to horizon-
tal (vertical) dominos [see Fig. 3(a)]. These terms guide
the orientation of the crystal surface representing the
ground state of dimers. The phase diagram in the
(tt„,p~) plane consists of regions corresponding to (a)
rational and (b) irrational slopes. In the regions of type
(a) the surface is always smooth; i.e., there is a gap in

the spectrum of its long-wavelength fluctuations. There-
fore, dimers form not a liquid but a crystal (spin Peierls)
state. However, if the quantum parameter X=J/V is

large, the gap becomes exponentially small as a function
of X, while the correlation length becomes exponentially
large. In this case the surface can behave as a rough one
(and dimers as a quantum liquid) at sufficiently large
(but microscopic) length and time scales. Rational
slopes always occupy regions of a positive measure in the

(p„p,, ) plane since the energy of an atomic step is
non zero.

As for the regions of type (b), they correspond to a
rough state of the surface. Their measure is positive
and, moreover, they can dominate the phase diagram in

the strong quantum limit k))1. Very often the re-
gions (a) and (b) interpenetrate each other forming a
complex fractal structure. The roughness of the surface
implies that a true quantum liquid sta-te of dimers is
formed in this part of the phase diagram Since the en. -

ergy of a step on a rough surface is zero, the spectrum of
excitations is gapless. Therefore, fluctuations of the
surface are described by a massless scalar field:
S=fdt d rH&, h) —c (Vh) ], thus yielding a linear
spectrum of excitations: co =c

~
k ~.

Up to now only close-packed dimers were considered.
Since doped states containing holes (vertices not covered
by dimers) are also of interest, let us make some remarks
on them. In a domino configuration a hole is represented
by an empty square plaquette. One can easily make sure
that in the 3D crystal picture empty squares correspond
to screw dislocations having Burgers "charge" 1.
What is the effect of holes on the ground state? It is
well known that dislocations act to destroy a smooth
state, so in the presence of a sufficiently large amount of
dislocations the system can favor a rough state even if it
lives in a region of type (a) of the phase diagram. In the
dimer language this conclusion means that holes can sta-
bilize a quantum-liquid state even if it is unstable for the
undoped systems.
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