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Nonlinear Evolution of the Modulational Instability of Whistler Waves
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The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic
waves is investigated in two spatial dimensions by numerical simulations. The long-time evolution of the
modulational instability shows a quasirecurrent behavior with a slow spreading of the energy, originally
confined to the lowest wave numbers, to larger and larger wave numbers, resulting in an apparently
chaotic or random wave field.

PACS numbers: 52.35.Mw, 52.35.Hr

Finite-amplitude whistler waves propagating along the
magnetic field in a low-P plasma are modulationally un-

stable with respect to low-frequency perturbations. '
Whistlers play an important role in the dynamics of
magnetospheric plasm as. Both naturally occurring
whistlers and whistlers used in active experiments may
have amplitudes large enough for the modulational insta-

bility to be of significance (e.g. , Ref. 3) and some obser-
vations may be interpreted in terms of modulational in-

stabilities, although the evidence is not conclusive. The
nonlinear evolution of whistlers is generally described by
a set of three coupled equations: a nonlinear Schro-
dinger-type equation for the whistler-wave amplitude
and MHD equations including the eff'ects of ponderomo-
tive forces for the low-frequency response. Considering
the different branches of the modulational instability
(MI) separately, Karpman and Stenflo5 derived

simplified equations for the evolution on each branch.
We have employed the reduced model for a numerical

investigation of the long-time nonlinear evolution of the
two-dimensional MI of whistlers coupled to fast magne-
tosonic waves (FMS branch).

The purpose of the investigation was first to verify that
the results from the reduced model agree with results
based on the full model. Then we verified the predicted
recurrence, and the main subject of the present Letter is

to study the long-time dynamics in detail, which indeed
is feasible within the present simplified model. We
found that the MI evolves in a quasirecurrent manner.
For relatively low amplitudes we obtained a series of
modulation and demodulation cycles with a slow spread-

ing of the energy to higher modulation wave numbers.
As the carrier-wave amplitude was increased, the re-
currence periods became fewer and the energy spread
faster to the higher mode numbers; i.e., the randomiza-
tion became more effective.

Although our results are obtained for a model with

specific applications to the evolution of whistlers, we be-
lieve that they are of fundamental interest for the non-

linear evolution of the modulation of waves in anisotrop-
ic, dispersive media. The one-dimensional MI of, e.g. ,

deep water waves was clearly demonstrated to be re-
current. The two-dimensional evolution of the MI of
deep ~ater ~aves, as described by a cubic Schrodinger

equation, showed a quasirecurrent behavior with a suc-

cessive leakage of energy to higher mode numbers. This
is somewhat similar to the results in this Letter for a
more complex system.

Our numerical investigations are based on a two-

dimensional version of the reduced equations for the
FMS branch,
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Here v~h and vg are the whistler-wave phase velocity and

group velocity, respectively, and cA is the Alfven veloci-

ty.
The dispersion relation for the MI of the whistler is

found by linearizing Eqs. (1) and (2) around the station-

ary solution y yp, v=0. We consider perturbations of
the form y=[Vrp+p(g)]expi8((), where Vrp, III, and 8 are
real functions, (=K„x+K,z —Qt, and we take p(()
=Re[aexp(ig)]. The growth rate of the MI is max-

imum for wave numbers satisfying KC —K, v = —
2

x (slK„+sqK,) and the corresponding value of 0 =Op
+i y is approximately given as

n, =KC, y= [(C,C,)'"/(2KC)'"]K„vp.

where Itr (E„—iE&)/Ep is the normalized, slowly vary-

ing whistler-wave electric field, v=(n np)/n—p, with n

the slowly varying density, and b (8, —Bp)/Bp, with 8,
the slowly varying ambient magnetic field. The spatial
coordinates are normalized with kp, the wave number of
the whistler wave, and time is normalized with the
whistler-wave frequency to. The coefficients in (1) and

(2) are expressed in terms of u =to/to„where to, is the
electron cyclotron frequency:

r i ]/p 28m u(1 —u) c~Bp 2 Bp
Ep= CA
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v vs/v&g =2(1 —u), sl =1 —2u,
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Equations (1) and (2) are solved numerically in a two-

dimensional domain of size L„xL, with periodical
boundary conditions. We employed a fully de-aliased

spectral method. The accuracy of the calculations was

checked by monitoring the simple conserved quantities

of Eqs. (1) and (2): Ii Jo fo'i yi dzdx, I2
fo'fo*vdzdx. For all the results referred to, the rela-

tive variation of Ii was less than 10, and the absolute

2a exp(yt )cos(K„x)cos(K,z —
Qot ),

variation of I2, which is zero for the applied initial condi-

tions, was less than 10
As initial conditions we use a modulation which is a

standing wave in the x direction and a propagating wave

in the z direction, with wave numbers K„o 2x/L„and
K,o 2x/L„and we choose the ratio K,o/K„o which

gives the maximum growth rate y at the given value of
Ko. Further, the initial values for p, 8, and v are chosen
to coincide with the linear evolution of the MI:
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First, we show an example of a persistent recurrent behavior in Figs. 1 and 2. The parameters are similar to those
used by Karpman and Shagalov. An almost perfect recurrence is observed for the two recurrence periods shown. Con-
tinuing the calculations to larger times (up to T 50000) we observed up to five recurrence periods, but the recurrence
becomes more and more imperfect. From the development of the corresponding wave-number spectra we found that
during the first recurrence periods the wave energy is confined to a few modes with the main part in the fundamental
mode. As the recurrence gets less and less perfect the energy is spread among an increasing number of modes. The
evolution in Figs. 1 and 2 coincides with the evolution found by Karpman and Shagalov based on the complete set of
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FIG. l. The temporal evolution of (a) the maximum of

i y i
', (b) the minimum of v, and (c) the phase separation Acr

for the low-amplitude case, yo 0.02. The parameters are
u 0.4, Ko 0.19, and K,o/K o 0.1. The spatial resolution is

16x 16 Fourier modes.
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FIG. 2. The evolution of the spatial structures of (a)
and (b) v for the same parameters as in Fig. 1. The size of the

spatial domain is L, 2z/K o 33.07 and L, 2~/K, o 330.7.
The darkest shading denotes the highest (positive) values. In

(a) the contours are drawn at the values (2, 4, and 6) x 10
and in (b) the contours correspond to ( —2, 0, and +2)x 10
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equations, at least for the time duration (the first re-
currence period) they have studied. In the growing
phases of the modulation, the evolution is in accordance
with the linear predictions [Eqs. (3) and (4)]. The
modulation has a spatial structure resembling cells
stretched and propagating along the z axis, with the
maximum of

l yl roughly L,/4 ahead of the minimum
of v as seen in Fig. 1(c), which shows the phase separa-
tion, da, between the fundamental components [(1,1)
model of I yl (= go+21&l Ivo) and v. The termina-
tion of the growth is associated with a further stretching
of the spatial structure of l pl along the z axis, which

gives rise to a dip in
l pl,„.The v cells conserve their

symmetry. Then h, cr changes and during the decreasing
periods of the modulation the maximum of l 11/l is

3L,/4 ahead of the minimum of v. When the modula-
tion has almost died out the phase gently slides back to
fulfill the condition for growth, cf. Eqs. (4), and the
modulation starts growing again. The recurrent behav-
ior observed in Figs. 1 and 2 may be described by a
simplified model based on a generalized Hamiltonian
formulation of Eqs. (I) and (2), which is truncated to in-

volve only a few modes. '

For increasing initial amplitude the recurrent feature

(a) T = 2000 (b)
T = 2000

gets less pronounced and the spreading of the energy to
higher mode numbers proceeds faster. This behavior is

exemplified in Figs. 3 and 4, where the initial amplitude
has been raised to @0=0.04. Initially we observe an evo-

lution similar to the one observed in Figs. 1 and 2 with

one period of almost perfect recurrence. The time scale
of the evolution is approximately half the one observed in

Fig. 1, in agreement with the prediction that the growth
rate is roughly proportional to the amplitude [Eq. (3)].
During that initial phase the main part of the energy is

still residing in the fundamental mode as seen in Fig. 4.
Note that the peak at K, =0, IC„=2K„oin the
spectrum [Fig. 4(a)] corresponds to a stretching of the

l 11/l cells at the termination of the growth as also seen

in Fig. 2(a). After the decreasing phase, with Aa
= +L,/4 as in Fig. 1(c), the modulation does not com-
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FIG. 3. The evolution of the maximum of (a) l y l

-', (b) the
minimum of v, and (c) h, a for the high-amplitude case, l/fp

0.04. The spatial resolution is 32x 32 Fourier modes. The
other parameters are as in Fig. 1.

FIG. 4. The amplitude spectra of (a) l pl (K) and of (b)
v(K) at diferent times for the same parameters as in Fig. 3.
Only half of the K space is shown; the other half is obtainable
from the reality condition [e.g. , v(K) =v ( —K)]. The funda-

mental mode is (K p, K-p) =(0.19,0.019). The vertical size of
the box corresponds to 5X 10 in (a), where the maximum

value attained by the (0,0) mode (the carrier wave) is 1.6
X10, and to 4.43X10 in (b), which is equal to the max-

imum value.
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pletely reach its initial value and there resides a non-

negligible energy in modes other than the fundamental.
For larger times the modulation regrows in a rather ir-
regular fashion (compare Figs. I and 3), due to the in-

volvement of the higher modes. However, the growth of
the fundamental mode dominates the evolution [Fig.
4(b)]. It roughly follows the linear prediction with

respect to the phase separation ha [Fig. 3(c)] and the
growth rate [Fig. 3(b)]. For larger times, progressively
higher modes get involved in the process as seen in Fig.
4. Note that while the dominant modes in the v(K)
spectrum for small mode numbers satisfy K, /K =K,o/

K„0=0.1, for higher mode numbers the relation becomes
K,/K„=0.15 indicating that the cell structures in

configuration space become less stretched along the z
axis. The observed development indicates that the ener-

gy will ultimately cascade to arbitrary high wave num-

bers giving rise to an apparently chaotic or random wave

field. Taking account of additional effects, '' which, e.g. ,

allow for leakage of the whistler waves from the density
ducts with scale length comparable to the whistler wave-

length, or account for the dispersion of the low-frequency
MHD waves may hinder the spreading of the energy to
the higher mode numbers.

By inspection of the linear dispersion relations for the
MI we found that the dominant higher modes in the
low-amplitude case and in the high-amplitude case for
T 6000, i.e., the "direct" harmonics (nK„p, mK p)
with n m and also the (K, =0, K„=nK„p),are all
stable. Thus, the spreading of the energy is solely caused

by nonlinear eA'ects during the initial time. Some of the
higher modes with m & n, excited at later times in the
high-amplitude case [Fig. 4(b)], are linearly unstable,
however, which explains their rapid appearance; recall
that the maximum growth rate increases with K [Eq.
(3)]. For other parameters, e.g., smaller K values, these
nonlinearly excited "direct" harmonics may be linearly
unstable. Consequently, the spreading of the energy to
higher wave numbers becomes more eA'ective and the re-
current feature becomes less pronounced. We have, for
instance, observed that even for the low-amplitude case
@0=0.02 only one recurrence period exists for cases
where (2K p, 2K„p)is linearly unstable.

In conclusion, we have found that the two-dimensional
MI of whistler waves generally evolves in a quasire-
current manner with the main part of the energy residing
in the fundamental mode and a slow spreading of energy
to higher mode numbers. The detailed evolution depends
on the initial conditions and the spreading of energy
proceeds faster for higher amplitudes and/or when the
"direct" harmonics of the initial modulation are unsta-
ble. Recurrence is in general expected to occur in

bounded systems having a finite number of "eff'ective"

degrees of freedom. ' By using the conserved quantities
of Eqs. (I) and (2), I~ and the Hamiltonian, ' we have

attempted to estimate an upper bound on the number of
"eN'ective" modes' for our system, but without any
definite result.

The recurrent behavior indicates the possibility of the
existence of narrow-band modulated whistler-wave trains
resulting from the MI, and indeed a spectrum with few

discrete sidebands similar to what has been observed in

active experiments in the magnetosphere can be repro-
duced. Whistlers with amplitude of the same order of
magnitude as used in Figs. I and 2 have been observed. 3

For that case the recurrence period (T =6000) corre-
sponds to = 0. 1 s for a typical magnetospheric whistler
wave of frequency 10 kHz. This time is shorter than the
wave transit time (~ I s) through the equatorial region
of the magnetosphere; thus, the effect should be observ-

able.
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