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Dynamics of Immiscible-Fluid Displacement in a Capillary Tube
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Through first-principles hydrodynamic calculations, the macroscopic behavior of the displacement of
immiscible fluids in a capillary tube is linked to the microscopic parameters governing the dynamics of
the moving contact line. Comparison with experimental data reveals that the contact line is dragged by
a frictional force varying as U", where U is the mean flow velocity and x= 2. Consideration of
capillary-wave excitation at the fluid-fluid interface as the source mechanism of this frictional force
yields predictions in excellent agreement with experimental data.

PACS numbers: 47.55.Kf, 03.40.Gc, 68.10.-m, 68.45.—v

The displacement of one fluid by another immiscible
fluid is a phenomenon whose rich ramifications have been
the subject of continued theoretical and experimental
studies for the past few decades. In Hele-Shaw cells or
in porous media, this displacement process is shown to
give rise to complex fingering patterns whose correlation
with the system parameters is only recently begun to be
understood. ' Apart from the pattern formation, but inti-

mately related to it at the fundamental level, is the prob-
lem of the moving contact line, defined as the inter-
section of the moving fluid-fluid interface with the solid
wall. Here the application of the traditional nonslip
boundary condition is shown to yield a nonintegrable
stress singularity at any finite velocity, thus implying
the breakdown of at least some elements of the tradition-
al physical picture.

There have been two approaches to the resolution of
this problem depending on the wetting property of the
fluids. When one of the fluids completely wets the solid,
it has been shown that there can be a thin precursor film

that lines the solid wall. In this case the fluid-fluid in-

terface only intersects the fluid film and therefore does
not have a true contact line. On the other hand, when

the fluids partially wet the solid it was proposed that
there is a region of size I, around the contact line in

which the nonslip boundary condition breaks down.
This latter picture was recently supported by results of
Monte Carlo simulations, which explicitly demonstrat-
ed the slipping of the moving contact line. Slipping thus
removes the physical singularity but makes the resulting
macroscopic behavior of immiscible-fluid displacement
directly dependent on the microscopic parameters close
to the contact line.

In this Letter, we present results of first-principles hy-
drodynamic calculations on immiscible-fluid displace-
ment in the partially wetting case. Through comparison
with experimental data, it is found that besides the
effects of viscous stress near the contact line, there is a
frictional force between the moving contact line and the
solid wall that is proportional to U", where U is the aver-
age flow velocity and x =

2 . We propose that the source
of the new frictional force is due to the excitation of
capillary waves at the fluid-fluid interface. Considera-
tion of this mechanism yields quantitative agreement
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FIG. 1. Interfacial shape Zo(r) for diff'erent capillary num-

bers calculated with gq/g~ = 1, I, =l0, and 80=40' in model
I. The leftmost profile is the static one. As Ca is increased
from 0 to 10, 2x10, 4x10, 8x10, 1.6x10
3.2x10, 6.4x10, 1.14x10, 1.64x10, 2.14x10
2.64x10 ', 3.14x10 ', and 3.64x10 ', the interface flips

progressively to the right. Inset: An enlarged view of the
contact-line region. The microscopic contact angle (clearly
visible only within the slipping region) is fixed at 40 .

with experimental data.
Consider two immiscible fluids labeled 1 and 2 in a

capillary tube of radius R, assumed to be small enough
so that the gravity effects may be neglected. At rest, the
interface between the two fluids forms a static contact
angle Hp with the wall as shown in Fig. l. As a result of
the capillary pressure, it is necessary to have a counter-
balancing pressure diff'erence of po =p

~

—p2 —2y
&coseo/R to maintain the static state. We will carry out
our calculations in the comoving frame in which the in-
terface is always stationary. Any pressure difference in

excess of pp is counterbalanced by the viscous pull of the
moving tube wall. In dimensionless form, the relevant
hydrodynamic equations governing the steady motion of
the two fluids are the time-independent Navier-Stokes
equation and the incompressibility condition:
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where p is the pressure field, v denotes the velocity field,
Ca is the capillary number gU/y, and Re is the
Reynold's number pUR/ri. Here ri and p denote the
viscosity and density of the two fluids in their respective
domains, v is measured in units of U, p is in units of y/R,
and length is in units of R. The nonlinear v. Vv term,
while included in our calculations, shows negligible effect
for all the cases addressed in this paper. Therefore Ca is
the only controlling parameter in Eq. (1).

For the boundary conditions, we expect that due to
viscous damping, far from the interface the flow should
be Poiseuille-like. That means at z + L, where we let
L 5, Sv, /Bz 0, v, 0, and p =const. At the fluid-fluid
interface, we must have v~ v2, v n 0, where n is the
interface normal, and

(p~ —p2)n (cr"' —o ") n+2yxn. (3)
Here o denotes the stress tensor of the fluid and x the
principal curvature of the interface shape, Zp(r), which
must also satisfy the requirements that at r 1 it forms
an angle 8p with the wall, and dZp(r)/dr 0 at r=0.
For the fluid boundary conditions at the tube wall, r =1,
we use two slipping models. In model I we let v„=0
everywhere, v, 0 at the slipping contact line, z 0
(since the contact line is defined to be stationary in our
reference frame), and v, —U[1 —exp( —

~
z ~/I, )]

away from the contact line. In model II we adopt the
Navier slipping model where the relative slipping veloci-
ty is related to the tangential stress at the wall, i.e.,
v, +U (I,/g)a„. In both cases l, is the physical pa-
rameter to be determined by comparison with experi-
ments.

The numerical calculation was performed by first car-
rying out a hyperbolic-tangent-coordinate transforma-
tion such that the curved interface Zp(r) (param-
etrized), as well as the extra-fine spacing between the
grid points around the contact line region

~
1 —r ~,

( z
~
(I„ is transformed to a regular Cartesian coordi-

nate. The transformed Eqs. (I) and (2) are then sol~ed
by using the finite-difference method with the initial as-
sumptions of a certain pressure difference and a spheri-
cal shape for Zp(r). We use Eq. (3) to match the v and

p across the interface as well as to solve for x.(r). From
the solution a new Zp(r) is calculated by integrating the
following differential equation: '

Zp'+Zp[1+ (Zp) ]/r

[1+(Z,') ']"' (4)

with the initial conditions of Zp=0, Zp = —(tan8p) ' at
r = 1. Once Zp(r) is obtained, the slope Zp (0) is
checked. If it is not zero, then the initially assumed
pressure difference is modified and the calculation is
iterated until consistency, in the sense that Zp(0) =0
and the assumed Zp(r) equals the Zp(r) obtained, is
achieved. Zero-sum checks, such as force balance and
entropy generation minus the work done, show that our
solution is accurate to —1% at Ca & 10 and —5%-

10% at Ca-10 provided that there are 5-10 points
inside the slipping region

~
z

~
( I,.

Figure 1 shows the results of our calculated Zp(r) at
various Ca values for model I with 1, =10 and Hp

40, assumed to be independent of velocity Ca, and

g~ =@2 q. The interface is noted to flip from one side
to the other as the Ca value is increased. This is true for
both models I and II. The essential physics here may be
stated as follows. At Ca=10, the viscous stress at the
center of the tube is about 2 orders of magnitude smaller
than the capillary pressure so that the interface would

appear rigid to the fluid. However, near the contact line
the near divergence of the viscous stress makes it compa-
rable to the capillary pressure. The interface is therefore
deformed by the viscous stress close to the contact line,
making the "apparent" contact angle 8 appreciably dif-
ferent from the actual contact angle Hp. Here 8 is
defined as 8 tan '[(1 —h )/2h], where h is the dis-
tance of the interface at r 0 from the z 0 plane. Ex-
perimentally, precisely this qualitative behavior has been
observed as U is increased, thus confirming one aspect of
our results.

Our calculated results on the apparent contact angle
for both models I and II also demonstrate the scaling be-
havior, which states that at a given value of Ca, Hp and
8 are related by the equation

g(8) g(8p)+Cain(K/I, ), (5)

where K is a model-dependent constant, and the function
g(8) is given by Cox. 6

Equation (5) implies that if g has an inverse, then 8 is
a function only of the variable y g(8p)+Cain(K/I, ),
i.e., 8 g '(y). Therefore, two different 8p values, 8p'

and Hp, can yield the same apparent contact angle 8 at
values of Ca that differ by a constant amount of
[g(8p' ) —g(8p )]/ln(K/I, ) so that they give the same y
value. It follows that the 8 vs Ca curves calculated at
different Hp values may be superimposed upon each other
through a uniform additive shift horizontally along the
Ca axis. This is indeed verified. By fitting Eq. (5) to our
calculated 8 vs Ca results with fixed 8p, the ratio K/I,
was obtained. Since I, is known (as input to the calcula-
tion), the value of K may thus be extracted. We get
K 0.3 for model I and K 0.05 for model II. In fact,
the different EC values represent the only macroscopic
difference between the two models. The excellent agree-
ment of Eq. (5) with our calculations means that Eq.
(5), with the fixed K value obtained above, may be used
as a simpler way to evaluate the 8 vs Ca behavior. Pro-
vided the behavior of Hp is known, data fitting using Eq.
(5) may yield the "experimental" values for I, within the
framework of a given model.

The variation of the pressure difference with velocity is
calculated to be p ~

—pq= —2 cos8+ 16(Ca)L. The
second term is noted to arise from the viscous flow of a
single fluid in a tube of length 2L. Since the pressure in-
duced by the interface (the first term) can be expressed
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in terms of the apparent contact angle 8, our results thus
confirm the prediction of Dussan and Davis" that 8
essentially determines the macroscopic state of the im-

miscible flow. By holding everything equal and varying
/„ we find cosHa: —ln/, . This slow variation implies that
for a given value of Ho, the Ca value at which 8 reaches
180, denoted as (Ca)p, is very insensitive to /, . The im-

plication of this will be seen presently.
Experimental data on 8 vs Ca have been obtained by

Fermigier and Jenffer ' and Stokes et a/. '3 Some of
their results are shown in Fig. 2. For given g~, g2, U,
and y, the inputs to our theory are 80 and l, . Since there
are two parameters for every value of 8, it may appear at
first sight that there is no way to uniquely determine Hp

and /, from the data. However, we make the observation
that physically, /, cannot be less than 1 A. For R —1

mm, that means /, 10 . Moreover, the insensitivity

of (Ca)p to /, means that /, has to decrease by orders of
magnitude before (Ca)p decreases by a factor of 2. All

this points to the fact that regardless of slipping models,

if we let Hp be velocity independent, then 8= 8p-const
for Ca & 10 . In other words, any signtftcant varia
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FIG. 2. Apparent contact angle plotted as a function of Ca,

defined here as tl~U/y. (a) Data of Fermigier and JenA'er

(Ref. 12). Triangles denote a system with rt2/rt~ 0. 1 and

squares denote a system with rtz/rt~ 7.6X10 '. The dashed
lines are calculated from Eq. (5) with the appropriate rtz/q~ ra-

tios, K 0.3, and I, 10 '. Solid lines are calculated with

K 0.3, I, 10 ', B 5.4, and x 2 for the triangle data and

K 0.3, I, 10 ', B 8, and x —,
' for the square data. (b)

Data of Stokes et al. (Ref. 13). rt2/rt~ 1 for both data sets.
Solid lines are calculated from Eq. (5) with K 0.3, I, 10
B 7.3, x —,

' for the filled-square data and K 0.3, I, 10
B 5, x 2 for the diamond data.
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tion of 8 observed at Ca & /0 can be attributed to
the variation of Hp away from its static value F. rom the
force balance at the contact line, the variation of 80 as a
function of U directly implies a frictional force per unit

length F given by

F/ y =cosHp(0) —cosHp(U) . (6)

In Fig. 2(a) we show two sets of data of Fermigier and
Jenffer' measured in a tube with R 0.5 mm. The
dashed lines are curves of 8 vs log1p(Ca) calculated from
Eq. (5) with U independent Hp, /, -10, and K 0.3.
They clearly disagree with the data. By analyzing the
variation of 8 for Ca & 10, we found that Hp(U) is
related by Eq. (6) to a frictional force F/y that varies as
8(Ca)" with' x= —,'. The solid lines are the resulting
fit to the data by using Eq. (5) in which the U depen-
dence of Hp is given by Eq. (6), 8 and /, are the fitting
parameters, and Hp(0) is treated as a slightly adjustable
initial value. As expected, the value of 8 is most sensi-
tive to the low-velocity data, whereas l, is determined by
the higher-velocity data due to the dominance of the
viscous effect at higher U, which also masks the effect of
the friction force above Ca 10 . Besides the excel-
lent agreement obtained, the resulting values of /, are
noted to be all within the physical range. In Fig. 2(b)
we have another two data sets of Stokes et a/. ' mea-
sured in tubes with R 0.5 and 1 mm. The quality of
the fits is equally good. However, now whereas in one
case we still get the exponent value of x = —,', in the other
case the optimal exponent value is x =

3 .
Recent molecular-dynamic simulations have demon-

strated ' that for solid walls which are smooth on the
molecular scale, /, =10 k However, Jansons' has
shown that for rough walls the "effective" slipping length
that enters in the boundary condition to our hydro-
dynamic calculations should be on the order of the typi-
cal period of the random undulations, denoted as lo.
This effective slipping length arises from the jump of the
contact line across indentations and therefore should be
distinguished conceptually from the microscopic slipping
length. Since roughness of the tube walls is expected to
be present for the data shown in Fig. 2, our determina-
tion of the slip length, varying from 100 A to 1 pm in

different samples, is indicative of the roughness scale.
%e propose that the same randomness-induced jerky

motion of the contact line is responsible for the frictional
force through the excitation of damped capillary waves
at the fluid-fluid interface. The scale lo gives rise to a
basic excitation frequency' cvp=2nU//p for the capil-
lary wave. ' If the amplitude of our excitation is denot-
ed by g /pg(w, t), where w =1 r is the coordinate —nor-
mal to the wall, then in accordance with the nature of
the jerky motion g(O, t) should be something like a
sawtooth function where in one period there is a segment
of slow motion with r}g(O, t)/r}t=U/lp and another seg-
ment of fast motion, corresponding to the jump, ' in

which the speed of the contact line u is determined by
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the balance of the surface tension and viscous resistance,
i.e. , u=y/ri. Since Uri/y Ca, we have u/U=103 if
Ca=10 . By decomposing g(O, t) into a Fourier series
in terms of the basis functions sin(mont), we get

g(w, t) - g C„e '""cos(P„w —z/2+ntvot),
n 1

(7)

where k„p„+ia„ is the wave vector corresponding to
the frequency nrvn, and C„ is the Fourier coefficient of
the sawtooth function. Since the instantaneous reaction
force on the wall is given by f= —yrlg(0, t)/rlw, the
average rate of energy dissipation FU may be equated to
the time average of fdg/dt over one period. This yields

F/y = ttl cg„nC„P„
The dispersion relation for a damped capillary wave

has been obtained by Huang and Webb

S'+ 2 S(I + (1+2S) '/']+y -0 (8)

where S inire, y ft rn, ro p/2rik, ft yk /2p, p
being the average density, and g gi g2. Solution of
Eq. (8) shows that for ru ( y p/64rt3 vo, there are two
branches of solution for k, both of which give pa: ni~/ .
For tv) vn, however, we get pcL'ro", where x =0.44 at
intermediate frequencies but approaches x 0.5 as
rv ~, corresponding to the diffusive nature of the
overdarnped wave. For y 30 dyn/cm, p I g/cm, and

ri 0.15 P, we get vo=5x103 sec '. Since the dissipa-
tion is dominated by the jump segment of the motion,
the important frequency to be compared is 2zu/le
=2zy/lor1=10 -10 sec ' (for le= 10 Jim to 100 A),
which is much larger than vo so that one is always in the
high-frequency regime. By taking the asymptotic solu-
tion of Eq. (8), p„(ncvtip/2rt ) '/, one gets

&/2

g C, n' ' (Ca) ' 8(Ca) ' '.
g n 1

(9)
From the values of y, p, and g given above, if one takes
the experimental values of /p 10 -10 cm and
u/U= 10 4-10, we get I (8 ( 100, which brackets
the values of 8 5.4, 5, and 8 obtained from the data.
Dissipation by capillary waves therefore provides not

only the explanation for the exponent value of x= 2,
but also the agreement with the magnitude of the ob-
served friction. The exponent value of —,

' is also within

the estimated experimental error if we note that the two
lowest-speed points have large uncertainties. In addition,
recent accurate measurements' focused on the low-

speed region have yielded an unambiguous value of
x= 2 . We note that one testable consequence of our

theory is that for molecularly smooth surfaces this
velocity-dependent frictional force should be absent.
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