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Ising Transition in Frustrated Heisenberg Models
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We derive scaling equations for a 2D square Heisenberg model where frustration spontaneously
breaks the Z4 lattice symmetry. At short distances, the model behaves as two interpenetrating Neel sub-
lattices. Short-wavelength fluctuations couple these sublattices, driving a crossover to single-lattice be-
havior at long distances and generating an Ising order parameter. When the spin-correlation and cross-
over lengths become comparable, there exists a finite-temperature Ising phase transition independent of
the subsequent development of a sublattice magnetization.
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The possible connection between antiferromagnetism
and copper-oxide superconductivity has led to consider-
able interest in the properties of two-dimensional (2D)
Heisenberg models. It was originally proposed that these
systems have a strong-coupling phase where quantum
fluctuations destabilize the long-range Neel order. '

Though the relevant 2D S 2 square Heisenberg anti-
ferromagnet appears to have a finite sublattice magneti-
zation, the possibility of strong coupling "disordered
phases" in certain generalizations of this model remains
a subject of great interest.

One method of enhancing fluctuations in the 2D
Heisenberg antiferromagnet is to add diagonal bond
frustration. The model considered is

H= g J(R; —RJ)S"Si,
(i,j )

with

about the other. According to Villain's principle of "or-
der from disorder, "' ' ' short-wavelength fluctuations lift
these degeneracies, generating new correlations at long
wavelengths.

In this Letter, we explore some of the consequences in
the simplest example, where g & 1 and the magnet be-
comes collinear, with Q=(O, n) or (x,O). Classically, the
ground state consists of two interpenetrating Neel sub-
lattices with independent staggered magnetizations nl
and n2. Although the exchange fields between the two
sublattices cancel, the zero-point and thermal fluctua-
tions depend on the angle 8 between the two sublattices.
This is most clearly understood in the analogous fer-
romagnetic J|,J2 model, (J|,J2 (0), which behaves as
two interpenetrating ferromagnetic sublattices. Here,
zero-point motion is completely eliminated when the two
sublattices are parallel, forming a pure ferromagnet. In

J(R) =g [2J|(c„+c~)+4J2(c„c~)]cos(qR), (2)

where el cos(qla), and J2 and J 1 2rI J2 are the
second- and first-nearest-neighbor couplings (Fig. I ). In
the region g-1, quantum fluctuations become large
enough to destroy the sublattice magnetization.

Previous theoretical work has focused on the limit of
weak frustration g&1, where the relevant long-wave-
length action is the O(3) nonlinear sigma model. s'9 In
this regime, it has been suggested that when the micro-
scopic spins are not multiples of two, the strong-coupling
limit is characterized by a dimer ground state. However,
for strong frustration g (1, the relevant long-wavelength
action is no longer a conventional O(3) sigma model. In
this regime, the magnetic wave vector Q of the classical
ground states no longer lies along a diagonal in recipro-
cal space, breaking the Z4 lattice symmetry and giving
rise to a superlattice structure. Classically, these mag-
netic structures exhibit an internal O(3) degeneracy
analogous to the phason mode of charge-density waves,
whereby one sublat tice may be continuously rotated

J) J2

1/S

'o
FIG. 1. Inset: Illustration of 2D square frustrated Heisen-

berg antiferromagnet. Main diagram: The critical value of S
where the sublattice magnetization vanishes, calculated for
J3=0.1JI from spin-wave theory, showing the Neel, helicoid,
and collinear phases.
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where g =T/2S J2. At first sight, the second term in A
is not invariant under lattice rotations. However, under
a 90 lattice rotation about a site on sublattice one, up
and down sites of sublattice two are interchanged, and
the sublattice magnetization n2 changes sign. Under the
lattice rotation operation (x,y) ( —y, x), n2 —n2,
the action is then invariant. This action is appropriate
for short wavelengths and high temperature, where the
fluctuation coupling between the Neel sublattices can be
neglected. The scaling behavior of A determines the spin
correlations in this "two-sublattice" regime. We set
n;(x) [1 —(p;) ] ' np(x)+p, 'e„where np(r) is the
slowly varying component of the magnetization, ' and
the p,' are the short-wavelength fluctuations in directions
e,' orthogonal to no. In this coordinate system

the antiferromagnetic case of interest, fluctuations can
never be eliminated, but they are minimized in the
configuration that is maximally ferromagnetic .This
occurs when n~ - n2 = ~ 1, and the spins along the x or y
axes are ferromagnetically aligned. Short-wavelength
fluctuations thereby select the collinear configurations,
breaking the Z4 lattice symmetry. The appearance of
the soft Ising order parameter o =n~ n2 in these phases
is an example of Uillain's "order from disorder. " In the
2D Heisenberg model this phenomenon is particularly
marked, for Ising order survives the loss of sublattice
magnetization at finite temperature, leading to a finite-

temperature second-order phase transition.
A gradient expansion of the classical energy E
PJJS; SJ in the 2D square collinear magnet yields

the classical action

Id' g (tin)'
2g .i 1 2

(4)8,np-8;e„8,e, -A; eb —8;np.

Expanding the action to Gaussian terms in the sym-

+2ri(8„n~ 8„n2 —Bynl' tlyn2) ~ (3) metric and antisymmetric fluctuations p, (p'+sp )/J2
I (~ +) wefind

d x[[(I+seari)(Q'. y,')'+2(1+earl)(8a )']+8.'8. [(1+seari)p,'p, —~ab(I +rica)Ps]] ~

2g
(s)

where (e„,e'y) =(1,—1) and flt', p,
' 8,&,

' —A; p, . In

tegrating out the fast fluctuations renormalizes the cou-
pling constants through the last term in (5), according to
the scaling equations

pig/tl ln(A) —(1 —ri') 't'g'/2n,

8ri/Bin(A) (1 —
ri ) 't rig/2tr,

where A ' is the short-wavelength cutoff. The last
equation implies that gg gogo is constant, so the anisot-

ropy g scales to zero in the two-sublattice regime. Using
this to integrate the first scaling equation, we find that g
becomes of order unity at the correlation length (-a
x exp[2tr/zpgp], where

zp 2rip/[sin 'rip+rip(I —rip) ' ) (7)
is a renormalization due to the anisotropy and a is the
lattice constant.

At longer length scales and lower temperatures, the
fluctuation coupling between sublattices becomes impor-
tant. To calculate the contribution to the free energy
from the short-wavelength fluctuations, we use the spin-
wave dispersion

cp„(q) = (4SJ2) [fl + ri(ac„+Pcy )]
—[c,cy+ ri(acy+Pc )] '], (8)

with ct =cosq& (l =x,y), (a,P) =(cos 8/2, sin 8/2).
This spectrum has zero modes at the four points Q~ =0,
Qq=(n, O), Q3=(O, n), and Q4=(n, n). The free-energy
contribution from the short-wavelength modes is then

d gFfl(ri) =
J ~ & t )A &

Tin[sinh( —,
'

Ptpq)) . (9)
~q 'q t~" (2n)'

The angle-dependent component BFfl(rt, 8) =Ffl(ri)—Ffl(0) contains no infrared divergences, permitting us

(10)

J)S 1 TE(T)- y&
—+ yr2J2 S J2S

Here, the coefficients of the thermal and quantum fluc-
tuations yr and yg are

d 1

[(c +cy)[1+ 2 (c cy) ] 2(c cy) j (12)

where ag =
2 ar 2, yielding yg 0.260. yr-0. 318.

Thus a quadrupole coupling term

A, —[E(T)/Ta l J~d x(n~ n2)

must be added to the classical action.
At high temperatures, each sublattice behaves as an

ordered Neel state up to a length scale g(T). Within a
region of this size, the quadrupole coupling then selects
configurations where o =n~ n2=+ 1, so cr behaves as a
soft Ising order parameter. In terms of the microscopic
spins around a plaquet cr=(25) (S& —S3) (S2 —S4).
The energy barrier required to move from an x-collinear
(cr 1) to a y-collinear (a 1) configuration is then
W(T) —E(T)[((T)/a] . When W(T) —T, there will be
an Ising phase transition into the collinear state. The
phase transition temperature is then approximately

T; =8trJpS /z p ln [T;/E (T; )] . (i4)
For large S, where S~ ln(1/g), the dominant contribu-

t
to replace the cutoff by zero in these terms. To leading
order in g

bF (rt, 8) —E(T)[1+cos'8],
~here
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tion to E(T) is from thermal fluctuations, and

T, =4m J2S /z pin [1/ri(2 yr) ' ] . (is)
The quadrupole term can be written as

A, ={2g) '„d'x{~' )'/[l{g)]', (16)
where

I (g) = a [T/4E (T)g] '~' . (i7)
At high temperatures l(g) is greater than the correlation

length. However, at the Ising phase transition T=T„
g —1, so l(q) —a[T;/E(T;)] 'I —g(T, ). For T ( T;, the
out-of-phase fluctuations in the sublattice magnetizations

275'
exp

~Ogo

Below T;, the two sublattice magnetizations become
rigidly coupled into a collinear magnet for length scales
I ) Ip(T). Ip is also the typical size of a wall that would
separate regions of a =1 and o.= —1. To explore the
low-temperature regime, we modify the antisymmetric
fluctuations with the mass term, which then leads to the
modified scaling equations

are exponentially damped with correlation length lo
=l(g(1/lp)). For small ri,

8mE' lo
Io =a exp

T a

(19)

!
served in recent finite-size studies. '

The previous discussion is strictly only valid for small
values of g. For larger g, higher multipole terms appear
in 8Fs(8). Within spin-wave theory, the quadrupolar
term continues to dominate the fluctuation coupling even
when g =1, so our expressions for the scaling and the Is-
ing temperature are qualitatively correct. Figure 2 plots
the behavior predicted by Eq. (14). As ri increases, the
fluctuation coupling between the sublattices rises giving
rise to a growth in T;, and a reduction in both g and lp.

The case g 1 deserves special attention, for in this
limit both g and lp are comparable with the lattice spac-
ing. Here, T; —J2S, and the two sublattices are locally
locked, even though the spin directions remain disor-
dered. For classical spins, entropy arguments establish
the presence of collinearity at this special point.
Doucot' has shown that for g =1, the frustrated
Heisenberg model assumes the form H=(J2/2)g(S~
+S2+S3+S4) . Classical ground states of this model

g(i/I, )

16n [1 —(ri' ) '] ' E Ip
(20)

T a

which grows to be exponentially larger than the out-of-
phase fluctuations at low temperatures. In summary
then, the magnetic spatial correlations at low tempera-
tures are given by

(n+ (R) n+ (0))-e
(n (R).n (0))-e (2 i)

R
(cr(R) a(0)) —(o)',

where n+ =n] + n2 are the symmetric and antisym-
metric fluctuations. As T 0, g ~, and T/g(1/
lp) 2JzS, so the value of lp is determined by the
zero-point fluctuations,

Ip(0)/a = (2rip) '(S/yg) ' '.
The out-of-phase fluctuations then have a "quantum ex-
change gap" A=c/lr-p, as first considered by Shendar
for 3D Heisenberg models. ' This has interesting conse-
quences for finite-size studies of this model. In cases
where the size of the lattice is small in comparison with

lo, there will be a small size-dependent splitting of the
twofold-degenerate ground state hE produced by tunnel-
ing. As q decreases, the tunneling barrier becomes
smaller, and AE rises. [A crude analysis suggests
ln(1/hE) —L (riS) '~, where L is the size of the lattice. ]
Qualitative agreement with this behavior has been ob-

=loexp

1/go

(22)

o)
c

o
o E

!i5 x
rn g(T)

!
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FIG. 2. The scaling behavior of I/g as a function of length
scale. Inset: The Ising phase transition as a function of frus-
tration, where t, z 0 T, /8 x12S .

Qg g 1 1 M
4~ (1 —ri') ' ' ([1+[l(g)A] ']' —rI') ' ' ~) ln(&) 2& ([1+[I(g)&] ']' —rI') ' '

For A))!p ', the scaling equations revert to Eq. (6).
When A —(lp) ', there is a crossover into the one-
sublattice regime, where to logarithmic accuracy ri(A)
=ri* =ripgp/g(1/lp) is constant. The coupling constant
for the symmetric fluctuations of the long-wavelength
one-sublattice structure is now g= —, g[1 —(ri*) ]
(the factor of 2 accounts for the doubling of the stiA'-

ness once the sublattices become locked), which obeys
the conventional scaling equation Bg/81n(A) = —g /2z.
Thus the correlation length for in-phase spin fluctuations
is now
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can be constructed by setting the spin configurations
along the x axis, and then growing the spin con-
figurations in the y direction using the condition that the
energy of each plaquet is zero. The resulting states are
all collinear (a & 0), with the isolated exception of the
Neel state. Growing away from the y axis produces
states with a. &0, and the two types of states cannot be
joined without forming a wall with energy J2S per unit

area. Thus at finite temperatures T~J2S, the fully
frustrated classical Heisenberg model will exhibit a col-
linearity. At finite S, the additional zero-point fluctua-
tions reinforce the Ising order already present in the
classical limit. We are left with the amusing conclusion
that the Ising phase transition reaches its maximum
value as we approach the frustrated point q =1 from the
collinear regime.

The nature of the finite-temperature phase transition
between collinear and noncollinear phases in the large-S
limit appears to be quite complex, and is dependent on

the sign and magnitude of the next-nearest-neighbor
coupling J3. When J3 is finite, rip =J~/(2J2 —4J3) ~ If
J3 is negative (ferromagnetic) and large in comparison
with J2, then there is a first-order phase transition be-
tween finite-temperature Neel and collinear phases, with

a vertical phase boundary at J~ =2J2 rising to meet the
second-order Ising boundary. Actually, small positive J3
terms are generated by thermal and quantum fluctua-
tions. In this case, there is the interesting possibility of
a second-order phase transition from a noncollinear
phase into a phase with short-range helicoidal order
along the x or y axis. As g is reduced, there will then be
a crossover where first the helicoidal spin-correlation
length shrinks to a, followed by a rise in the spin-

correlation length for the simple collinear phase.
Finally, we would like to comment on the implications

of this work for regions of the phase diagram where the
ground state has no sublattice magnetization at zero
temperature. Figure 1 shows the critical value of S de-
duced in spin-wave theory, for the case of a small posi-
tive J3. At large S, for all values of J2& (J~ —4J3)i'2,
&o)WO, stabilized by short-wavelength quantum fluctua-
tions. Above the line S=S, in this region, the spin-
correlation length is large but finite, so a finite-
temperature Ising phase transition is still expected. ' In
contrast with the conclusions for the O(3) sigma mod-

el, ' this collinearity is driven by frustration and our
conclusions are stable against the effects of tunneling be-
tween different hedgedog configurations of the order pa-
rameter. Since the size of a point defect ld is much
larger than the size of an Ising wall ( lp), the Berry-
phase calculation must be carried out with the Neel sub-
lattices locked. The effective spin that appears in the
Berry-phase calculation will therefore be S*=2S, which
is always an integer. When S* is even, there are no col-
lective topological effects. When S is odd, the collec-
tive tunneling will act only to reinforce the twofold de-
generacy driven by fluctuations. Since S* is never half

integer, we are led to the interesting conclusion that "or-
der from disorder" suppresses the topologically generat-
ed fourfold-degenerate spin Peierls states. It would be
interesting to extend our analysis to the case of helicoidal
magnets, where a richer classical degeneracy is pres-
ent. ' In this case the (2+ I)-dimensional short-range
quantum fluctuations appear to stablize not only scalar
o, but also the vectar order associated with the twist
S;XSJ of the selected helicoidal state. ' This will be a
subject of future work.
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