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We derive equations of motion for a diluted gas of spiral defects in the two-dimensional complex
Ginzburg-Landau equation. The interaction of two defects is treated and our predictions agree with a

recent numerical experiment.
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Defects in two-dimensional nonequilibrium extended
systems play an important role.' 1In particular, it has
been suggested that spiral defects could destroy long-
range order in these systems, 1.2 and recent numerical ex-
periments have provided clear evidence of the mecha-
nism involved.? It has indeed been shown by Coullet,
Gil, and Lega that if one starts in the Ginzburg-Landau
equation with complex coefficients (which is taken as a
representative example) with a homogeneous initial con-
dition, strong phase gradients arise as soon as the
relevant parameter crosses the point where the phase in-
stability starts. At the same time spirals start to appear
and their density tends to stabilize as one continues the
variation of the parameter; in this state the equal-time
correlation goes rapidly to zero with distance, thus show-
ing that the system is now disorganized. It is this state
that we describe here as a diluted gas of spiral defects in-
teracting with a global phase. We consider then the
Ginzburg-Landau equation with complex coefficients,

0 A=puA+U+ia)VA—(1+iB)| 4|34, 1)

and we shall see that a solution of (1) exists in the form
of a dominating term vanishing at N moving points
{fri(1),r2(0), ..., rn (1)} representing N spirals plus a
small correction term.

We recall first what is known about single-spiral solu-
tions.>*> Doing the transformation 4 — Aexp(—iaut)
we obtain

9,4 =(1+ia) uA+v2A—%|A|2A ., @
a

with y=1+aB, v=B—a. The defects here are spiral
solutions %> of (2) of the form

A(r,e,t) =D(r)explilot +me—S(H)1}, 3)

where m € Z and (r,9) are polar coordinates in the
plane. The functions D(r) and S,(r) =dS/dr satisfy the

coupled ordinary differential equations

2
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28,D,+Vi:sSD+—2 _p+—Y _pi=0, (4b)
1+a? 1+a?
where
dD ,_ 9> .1 @
D=2 vy:=2% 429
dr or: r or

We consider from now on the case of one-armed spirals
(|m| =1). One has the asymptotic behavior

Ar, r—0, )
D)= e _kQ+a) 1 3

2vD> r’ ’

1% sz 2 3
- ’ _’09

s {1ratl 4 6r} '

el L (6)
v r

with D= =(u—k?)'?, @=—vD>=2. Here A and k are
functions of (a,B), and k vanishes for v=0. The region
around the origin where D(r) has not attained its asymp-
totic value D is called the core of the defect. We call ¢
its radius.

The solution (3) is topologically stable in the sense
that it cannot disappear by continuous deformation. The
amplitude of (3) vanishes at the origin and conversely a
solution of (2) which vanishes at some point behaves lo-
cally as (3). Up to here, all of this is known. We
remember now that, as stated before, numerical experi-
ments show that for y <O spirals appear spontaneously
and a diluted gas of these defects establishes itself and
dominates the behavior of the system. Consequently,
the amplitude A vanishes at N points {ri,rs, ...},
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|r; —r,-l > e. We represent this situation by the Ansatz
A=(R P +y)exp(i0®), where R @exp(i0©) repre-
sents the NV spirals and w € C is a small correction. We
put

N
R@=3% [D(p;))—D~1+D"~ (7a)
i=1
and
N N
6(°)=a)t+ Z m;p; — Z cS‘(pi)
i=1 i=

—kminipy,py, ...,pa +¥ (1), (7b)

where p;=r—r;, pi=|pi|, $(p;)=S(p;) — kp;, sine;(r)
=(y—y:)/pi, cosp;(r)=(x—x;)/p;, and ¥(r,t) is a

dl'k - N _ay
dt 2 [E;( [m'mk 2v | ri i=k
where rix =rx —r;, rix = | rix |, i =rix/rix, and Z is a un-
itary vector orthogonal to the plane of the system. The
first sum in (8) gives a force acting in the direction of
the line rj joining the centers of two spirals and is at-
tractive if m;my; —ay/2v<0 and repulsive otherwise.
The second gives rotational dynamics and, in particular,
the term

mimg . .
my 3, AN
i=k ik

is the usual vortex dynamics.®® The phase ¥ satisfies a
Kuramoto-like equation plus terms depending on the tra-
jectories of the spirals.

We make some comments here concerning the reduc-
tion of the original Eq. (2) to Eq. (8) for the motion of
the spirals and the phase equation for ¥. If we had con-
sidered the Ginzburg-Landau equation with real coef-
ficients, the spirals would be the usual vortices [S(r)
=0, » =0], and proceeding in the same way the equa-
tion Lw=I would now be L1=_L, ie., Lis self-adjoint.
As a result of this the elements of kernel(L")
=kernel(L) are known since they correspond to the
Goldstone modes associated with translational invariance
of (2) and the invariance 4 — A exp(ié) with constant §.
The first set of Goldstone modes gives, through the solva-
bility conditions, the equations for r;(¢), and the mode
associated with 4 — A exp(ié) gives the equation for ¥,
It is this well understood situation that has guided us to
write our Ansatz (7) and it is the careful consideration
of the known Goldstone modes of the real case which has
guided us to find the elements of kernel(L") in the com-
plex case. Once these vectors in kernel(L') are deter-
mined the solvability condition leads to (8).

We make the following remarks: (a) For y <0 one
has

ay _ly=(U+a)ly >0
2v 2v?

Lik 5 ya
—+my Z am;my + v

A Tik a
i— —mZxV¥ |, +aV¥|,,

slowly varying phase.

One can easily check that 4 is not a solution of (2)
and we account for this by allowing spirals to move [the
{r;} then become functions of time {r;(z)}] and consider-
ing that a small correction w arises. In order to obtain
equations of motion for the new variables {r;(z),¥(r,?)}
we replace the Ansatz in (2) and, assuming that
t;(¢), ¥(r,t), and w are small quantities of the same or-
der [in fact we are assuming that the time dependence
enters only through r;(¢) and ¥(r,7), and consequently w
is a functional of them], we obtain in lowest order an
equation of the form Lw =1 The solvability condition
of this last equation is / orthogonal to kernel(L")
(L' L here since L is not self-adjoint) and gives equa-
tions for r;(z) and ¥(r,r). Here we use |ri—r;| >e
and keep only the leading terms. We obtain

) (®)

Tik

and the corresponding contribution to the force in (8) is
attractive. (b) The origin of the terms depending on y
in (8) is the leading part of the asymptotic behavior
&,(r— o) given by (6); in fact the form of the equa-
tions of motion is

d Y :
—r—k-Z{Z [m_mk — a8, (ry)

fix +aVV¥
dt i=k | Tik '

N

+mkix [Z

ik

m;my

a

+eS°,(r,-k)]f,-k -Vv

|

9)

Tik

(c) Putting

(O — o, — QY |y | Tik
H ZZ[m,mk 2V]ln[ 2 J,

i=k
Tik
In|— |,
[ & ]

where & is a constant with dimension of length, one can
write (8) as

HO=—L 3 lomm+-L
2 2v

i=k

dry aH(I) . aH(Z)
—_— =2 -2 X
dt ory "k ory
+2aV¥ |, —2miZxV¥|,, , (10)

where the dynamics of H® is of Hamiltonian type. (d)
An alternative form of the equation of motion is ob-
tained by defining

Q(k)(r)-z;‘m,-%(r)—zks(p,-), an

which gives

d 3w @*(r, )
2 e i w0 | ,,30

dt ory ory ’

(12)
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where ®®(r) =d*® (r) + ¥ (r,1) and ®©(r) is the total
phase at r produced by all the spirals except the one in
rx (compare with Ref. 9 where this result is discussed in
the variational case a =8=0).

We consider now the case of two interacting defects
leaving aside the contribution of the phase in (8). This is
reasonable when one has phase stability, which must be
checked from the phase equation for ¥, which here is the
equation for the phase of a perturbation to the single-
spiral solution plus terms coupling the phase to the tra-
jectories of the spirals. A complete discussion of the
phase equation and its consequences (for example, the
hysteresis loop observed in Ref. 3) will appear soon.'®
Defining the ‘“‘center-of-mass” coordinate R =(r;+r,)/2
and the relative motion coordinate r =r; —r,, we obtain
from 8) (r=|r|, f=r/|r|)

ﬂ{~=(m|—m2) amlmz-’r—L lixf, (13a)
dt 2v | r
dr ay | T
_._=4 — —_—
dt [m|M2 2v]r
+2(m,+m>) am|m2+—2% —}ixf'. (13b)

In the spiral-spiral case (m,=m,=m, m*=1) (p=32
xf),

4R _ | —ar

dt 2v
We see then that the center of mass does not move and
the spirals rotate and move away if c=1—ay/2v> 0, in
which case the integration of (13b) gives

0, ii_l_._ =4

I oamla+r L Lo, 19
dt r 2v | r

o,
m(a+1y/2v)

This behavior has been observed in a recent numerical
experiment'' involving a direct simulation of the
Ginzburg-Landau equation [see Figs. 2(b) and 2(c) of
this reference] done for @ =0 (o=1), in which case one
has phase stability. In the spiral-antispiral case (m,
= —m;=m) one has

, r(t)2=r¢+80r. (15)

r(e) =rgexp

d—R=2m —a+-L l@, (16a)
dt 2v | r
dr ay | 1.
A — 41+ 8| ¢ (16b
di 4 2v rr )

The spirals do not rotate now and are attracted if r=1
+ay/2v> 0. The center of mass moves in the direction
@=2zxft which is perpendicular to the line joining the

d i n o
__Lk_-z [az mimk r,k—bz 8 (rp )t +bVY
dt i=k ik i=k

Ty
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+2myzx [b Z

two spirals which has direction f=const. This behavior
has again been observed in Ref. 11 [Fig. 1(b) of this
reference] for a =0 (r=1).

The only point in which we find no agreement with the
direct simulation in Ref. 11 is in their Fig. 1(c) where it
is observed that the spiral and the antispiral move away
if their initial distance is sufficiently big. Our equations
cannot explain this behavior.

We consider some special cases of (2). If a=, one
has v=0 and Eq. (2) is of the form

9, A=—(+ia)é¢/6A4 ,
with

o=—farulal?=|val2= + 4|9,

and ¢[A4] is a Lyapunov functional for (2).'? In fact,
#lA] is a nonequilibrium potential;'? i.e., if one adds &-
correlated white noise V7f(r,t) to (2), the stationary
probability is ps[4] = exp(—1/n¢[A4]) (a nonpolynomi-
al potential in one space dimension has been found in
Ref. 14 for a#pB). The function S(r)=0 for v=0, the
defects are vortices, and the equations of motion reduce
to

m;my

N

ZX T

fu+ame X

dry m;my
- =2 E !
i=k  Tik

dt i=k rik

—mzxV¥ |, +aV¥ |, |, a7

which can be written in the form (10) with H @ =qH ",
HY =— 1Y mmIn(ry/E). For the real Ginzburg-
Landau equation (a =g=0) Eq. (17) reduces to

dl‘k
dt

=2[E T b —mi XV |, (18)

i=k Tik

One then obtains for the vortex-antivortex interaction in
the presence of thermal noise the equation 7= —4/r
+VTf(1), where (f(1))=0, (f()f(t'))=86(—1"), r is
the relative coordinate [see Eq. (16b)], and T is propor-
tional to the temperature. The stationary probability is
then py(r) = (r/€) “¥7 r > ¢, and py(r) =0, r < ¢ (vor-
tices annihilate when they touch). Then
_1—8/T
(r 2=8/T €

and for T < T, =4 one has a finite {r) which increases
with the temperature and diverges at 7=T, (Kosterlitz-
Thouless mechanism).

The generalization to A-Q systems>*
Here (2) is changed to

dA=G@+ib)UA(lA])+ia(|4])}a+Vv2i4], 19)

and the equations of motion for the spirals are [see Eq.

(9]

is elementary.

mimyg , a
J l'i/(+a§c9r(r,'k)l’,'k_avw
i

(20)

1=k Fik r
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The asymptotic behavior of S, for r— oo is now

AWD™) 1
S,—k+ D0 L
§ 20'(D™) r
where D*=D(r— ) with D(r) the amplitude of the
spiral solution of (19) [see Eq. (3)].

If we choose a a=q(|A4|)=0, Eq. (19) is a non-
linear Schrodinger-type equation, S(r) =0, the defects
are vortices, and from (20) the dynamics is the usual
vortex dynamics, ¢~

dl‘k

AL P WL T Q1)
dt i=k Tik

If, furthermore, b =#/2m and
AA=Cm/aD(u—glal?),

then (19) becomes the well-known equation for the mac-
roscopic condensate wave function on which the analysis
of superfluidity is based'>'® and (21) is the equation for
superfluid vortices.

A last remark: We can write (20) in the form (12),
and with the same notation one has

5 (k) 5 (k)
D (

dry — —2amggx 9D (ry) +2b6 i) '
ory ory

dt

Here b =0 corresponds to the real variational case and
the right-hand side (RHS) of (22) reduces to the term
2xVDX 3 result obtained by Kawasaki® [see after Eq.
(12)]. The case a=0 corresponds to a nonlinear
Schradinger-type equation and the RHS of (22) reduces
to the term Vé(k), a result obtained in Ref. 16 for the
equation satisfied by the condensate wave function.
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