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Instabilities of One-Dimensional Cellular Patterns
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Symmetry arguments are used to classify the various modes of instabilities of one-dimensional periodic
patterns. An important feature of this theory is to point out the coupling between these modes and the
phase of the cellular structure. A number of results presented allow us to interpret recent observations
in hydrodynamical-flow and directional-solidification and -fingering experiments.
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Recent experiments, including Couette-Taylor flow, '

Rayleigh-Benard flow, directional-solidification, and
directional-fingering experiments, report a number of
very interesting observations on secondary instabilities of
one-dimensional cellular patterns.

The aim of this Letter is to describe, on the basis of
symmetry arguments, generic instabilities of such period-
ic patterns. Such an instability can be either stationary
or oscillatory. Its spatial period can be the same, double,
or "irrationally" related to the period of the basic struc-
ture. In the first two cases only the parity of the critical
eigenmode matters. We are led to define ten different
generic cases. Remarkably enough this simple classi-
fication leads to a very rich variety of patterns, including
breathing, vascillation, and translation of the basic cellu-
lar pattern. Spatial fluctuations allow the existence of
localized solutions, defects, and phase instabilities which
have a specific character, because of the coupling with
the phase of the underlying periodic pattern.

Our analysis starts with a partial differential equation
which describes a physical system extended in only one
spatial dimension,

8,U f„(U,&),

where p represents a typical control parameter, dropped
in the following. This system is assumed to be invariant
under the following transformations: Tq, x x+ h

(space translation); S, x —x (parity symmetry); and

7e, r t+8 (time translation). Our fundamental hy-
pothesis is the existence of a stable, steady ('T~p Up),
x-periodic solution of Eq. (1) (T,Up Up, where a is the
spatial period) which is invariant under the parity sym-
metry S (SUp Up). Although Up generally depends on
the transverse coordinates, we have dropped these vari-
ables for the sake of clarity. We first remark that the
basic pattern only breaks x translation. It is thus invari-
ant under the subgroup of transformations T„, (for any
integer n), S, and 7'e (for any real 8). Instabilities of
this pattern are likely to break some of these symmetries.
Before addressing the stability problem, a few remarks
are in order. Thanks to the x-translation invariance, for

any constant p, Up(x+p) is also a solution of Eq. (1);
then gp(x) 8Up/8x appears as a marginal mode of the
linear problem associated with the stability of Up. This
marginal mode describes phase perturbations of the basic
pattern. This degree of freedom is in general coupled
with the possible instabilities of the cellular pattern. Let
us look for a perturbation of Up under the form
U(x, t) Up(x+p)+u(x+p, t), where u is chosen to be
orthogonal to gp, i.e., (u, gp) 0, where (f,g) denotes the
scalar product in phase space. After linearization Eq.
(1) reduces to

8,y - (Lu, gp),

8,u X(x)u —(Xu,gp) &p(x) —=L (x)u, (3)

U(x, r) -Up(x+y)+u(x+), X,r, T)+
where

u(x, X,r, T) QAJ exp(apt ) Vp(x), (4)

where gp(x)—=gp(x)/( )gp( [ and X(x) 8f/8U) U,.
and L are linear operators with periodic coefficients
which commute with T„7'e, and S. The stability of Up
reduces to the study of the eigenvalue problem LV o V.
Let us assume that for the parameter value p 0, an in-
stability occurs, i.e., there is a critical eigenvalue cd 0
or ap chirp Since .the eigenvalue problem is a linear
diff'erential equation with periodic coefficients, a general
bounded solution can be found under a Floquet form
(in solid-state physics, it is known as the Bloch wave
function): Vp(x) exp(ikx) Vp(x), where Vp(x+ a)

Vp(x), and k is a real constant. Generically, a solu-
tion V of Eq. (3) has either the same period a (i.e.,
k 0) as the basic cellular pattern, the double period 2a
(i.e., k x/a), or a period irrationallys related to a. De-
pending on the dimension of the kernel of Lp ~pI
several amplitudes can be necessary to describe the
weakly nonlinear supercritical regime. Let us denote by
Vp the critical eigenvectors of L for p 0. Near p 0, at
the leading linear order, a solution of Eq. (1) is looked
for under the form
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where At and p are functions of slow Uariables (X,T),
and where the ellipsis expresses the slave variables in

terms of Ai and p. U(x, t) represents a solution of Eq.
(1) if the amplitudes AJ and p satisfy solvability condi-

tions

~;([Aj],p), 8TQ @({AJj,p) . (5)
We show below the specific form of Eqs. (5) for the

ten different generic cases which describe all the possible
instabilities occurring in a one-parameter family of
dynamical systems.

(A2 Stationary instabilities (—1) At the same spatial
period (k 0), the perturbation u reads

u(x, X,t, T) A(X, T)Vp(x) . (6)

0T A + IXX+45AXX ~ (8b)

JL

First we look at the symmetrical case, SVO Vo. Ap-
plying to Eq. (6) the subgroup of transformations which
leaves Uo invariant, one discovers the corresponding rep-
resentations of the amplitude A (real order parameter)
and the phase P. The principal part of the equivariant
amplitude equation after an appropriate scaling now

reads

u —A '+ 4|Axx+ @ax, (7a)

4T Ax+Axx t (7b)

where the subscripts T and X, respectively, represent the
derivative with respect to T and X, and g; with i 1,2
are real constants. This case corresponds to a saddle-

node bifurcation where the basic pattern disappears for
negative values of p.

In the antisymmetrical case, SVO —Vo, the system
has to respect the in variance x —x, A

p~ —p; the generic principal part now takes the form

AT ttA A + ()Axx +$2AxA +$3pxA +$4/xx (8a)

breaking of the parity symmetry, whose A is the order
parameter, induces, thanks to the first term in Eq. (8b)
[due to the antisymmetry of the Goldstone mode gp(x)],
a translation of the cellular pattern itself. This parity-
breaking transition has been observed in particular in the
case of transversally driven interfaces, where it ap-
pears under the form of tilted cells which translate at a
constant velocity [see Figs. 1(a)-1(c)]. These phenome-
na also appear in binary convection, ' in the unfolding
of codjmension-two bifurcatjons l l, i2 and in model equa-
tions. ' These equations also describe source and sink de-
fects, which correspond to points where the basic pattern
translates in opposite directions. ' In the case of a sub-
critica1 symmetry-breaking transition, ' droplets of
asymmetric cells propagate inside the basic pattern.

(2) At double the spatial period (k n/a), the pertur-
bation reads

AT PA +'A +g|Axx+(2gxA,

~T -~x(A ')+~xx.

(loa)

(lob)

This case is very similar to the period-doubling bifurca-
tion for time-periodic solutions of ordinary differential
equations.

The other case is the antisymmetrical case,
SVO —Vo. Although this case is physically distinct
from the previous one [see Figs. 2(a) and 2(b)], the am-

plitude equation has the same form as Eqs. (10). Spatial
period-doubling bifurcation has been in particular ob-
served in directional-solidification experiments.

u(x, X,t, T) -A(X, T)V,(x),
where Vp(x) exp(inx/a)Vp(x) is such that Vp(x+a)

—Vp(x) and is real.
In the symmetrical case, SVO Vo, we have

This is a very interesting and very common case since the

(c)

(b)

FIG. 1. Sketch of the parity-breaking instability. (a) The
basic pattern has been chosen in order to mimic a solidification
interface (see, for example, Ref. 3). (b) and (c) represent, re-

spectively, the broken-symmetry states which respectively

propagate to the left and to the right.

FIG. 2. Sketch of the stationary period-doubling instability.
(a) Symmetrical case. (b) Antisymmetrical case.
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Ar -pA ~
I A I 'A+giAxx+42yxA,

er -&x( I A I ')+exx,
(12a)

(12b)

where g; with i 1,2 are real constants. No experimen-
tal evidence of this case has been reported so far.

(8) Oscillatory instabilities —(1). At the same spatial
period (k 0), the perturbation reads

u (x,X,t, T) A (X,T)exp(itot) Vp(x)+c.c. (13)
A A

For the symmetrical case, SVp Vp, since Vp and Up
have the same period and the same symmetry, the insta-
bility leads to a "breathing-like" oscillation [see Fig.
3(a)]. The amplitude equation reads

Ar uA —( ~ I+ ta) I A I
'A +giAxx+ g2fxA (14»

(3) At a spatial period that is irrationally related to
a, the perturbation u reads

u(x, X,t, T) A(X, T)exp(ikx) Vp(x)+c.c. ,

where c.c. means complex conjugate. The amplitude
equation reads

Both instabilities are observed in the Taylor-Couette
problem. ' The symmetrical case gives the so-called
"twisted vortices, ' while the antisymmetrical case gives

wavy vortices, both bifurcating from Taylor vortices
[denoted here Up(x)]. The symmetrical case was also
observed in Rayleigh-Benard experiments where it has
been coined as vascillation.

(2) At double the spatial period (k z/a) the pertur-
bation reads

u(x, X,t, T) A(X, T)exp(itot) Vp(x)+c.c. , (15)

where Vp(x) exp(i t/ra)Vp(x) is such that Vp(x+a)- —V, (x).
The amplitude equation is the same as for the symme-

trical or antisymmetrical case and it does not depend on

the symmetry of Vp. This mode of oscillation mixes both
breathing and vascillation. The two cases lead to physi-
cally different situations. They are observed, for in-

stance, in the Taylor-Couette problem (WIB and WOB
of Ref. 1, see also Ref. 19).

(3) At a spatial period that is irrationallys related to
a, the perturbation reads

0 r -&x( I A I
') + tP(AxA —

A Ax) +Pxx, (14b)
u (x,X,t, T) A (X,T)exp(itot+ikx) Vp(x)

where a and P are real, g; with i 1,2 are complex con-
stants, and p is complex.

For the antisymmet~ical case, SVp Vp, the ampli-
tude equation is the same as for the symmetrical case.
Physically the instability leads to a different spatiotem-
poral pattern, which can be seen as a "vascillation" of
the basic pattern [see Fig. 3(b)]. In supercritical cases a
phase instability can occur. This instability could be at
the origin of the spatiotemporal intermittency. '

+8(X,T)exp(itot —ikx )SVp(x)

+c.c. (16)

The amplitude equations read

Ar cAx+ttA —[(~ I+ta) I A I '+(P+ty) I8 I
'»

+4 i Axx+ 424xA, (17a)

8,- —e8x+t 8 —[(~ I+la) I 8 I '+(P+iy) I A I
']8

(a)
U(K, t)

+4 i8xx+ 42kx8,

(IA I

—I8I )+Pxx+irt(AxA —AAx)

+tg(8x8 —88x)+~ax(I A I
'+

I 8 I
'),

(17b)

(17c)

(b)
U(x, t)

FIG. 3. Sketch of the oscillatory instability at the same spa-
tial period. (a) Breathing mode. (b) Vascillation mode.
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where gj. and tt are complex, and a, P, y, b, tt, and g are
real. In the case A 8 (i.e., when I y I

( 1) one observes
a spatially quasiperiodic standing wave, while in the case
of A&0 (respectively A 0) and 8 0 (respectively
8~0) (i.e., when I y I

) 1), the resulting state is spatial-

ly and temporally quasiperiodic. The spatially quasi-
periodic perturbation propagates with a velocity to/k (re-
spectively —to/k), while, thanks to the first term in Eq.
(17c), the basic cellular pattern translates itself with a
velocity IA I (respectively —I8 I ). This kind of be-
havior could be related to some experimental observation
in shear-flow experiments in circular geometries.

This study is obviously related to the more classical
frame of bifurcations under discrete groups of sym-

metries, ' and in particular with bifurcations from group
orbits. The aim of this Letter was to give a short
description of the ten generic instabilities [see Eqs. (6),
(9), (11), (13), (15), and (16)] of one-dimensional
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periodic patterns, taking account of large-scale spatial
modulations. Experimental results which find their in-

terpretation in this framework are hydrodynamical insta-
bilities (Couette-Taylor and Rayleigh-Benard Rows) and
directional solidification and fingering. Our preliminary
results lead to many interesting questions, including a
possible relation between the Eckhaus instability of the
cellular patterns triggered by one of the instabilities and
the spatiotemporal intermittent destruction of spatial or-
der. Let us finally mention that this kind of analysis can
be generalized to higher-dimensional cellular patterns.
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