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Synchronization in Chaotic Systems
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Certain subsystems of nonlinear, chaotic systems can be made to synchronize by linking them with
common signals. The criterion for this is the sign of the sub-Lyapunov exponents. %e apply these ideas
to a real set of synchronizing chaotic circuits.

PACS numbers: 05.45.+b

v g(v w), w h(v w), (2)

where v (ul, . . . , u ), g (f ( 1), u. . . ,f (u)), w

-(u +1, . . . , u. ), andh-(f +1(u), . . . ,f„(u)).
Now create a new subsystem w' identical to the w sys-

tem, substitute the set of variables v for the correspond-
ing v' in the function h, and augment Eqs. (2) with this
new system, giving

v g(v, w), w =h(v, w), w'=h(v, w') . (3)

Examine the difference, h,w=w' —w. The subsystem
components w and w' will synchronize only if hw 0 as

c . In the infinitesimal limit this leads to the varia-
tional equations for the subsystem,

j=D„h(v(r), w(r) )&, (4)

Chaotic systems would seem to be dynamical systems
that defy synchronization. ' Two identical autonomous
chaotic systems started at nearly the same initial points
in phase space have trajectories which quickly become
uncorrelated, even though each maps out the same at-
tractor in phase space. It is thus a practical impossibility
to construct identical, chaotic, synchronized systems in

the laboratory.
In this paper we describe the linking of two chaotic

systems with a common signal or signals. We show that
when the signs of the Lyapunov exponents for the sub-
systems are a11 negative the systems will synchronize. By
synchronize we mean that the trajectories of one of the
systems will converge to the same values as the other and
they will remain in step with each other. The synchroni-
zation appears to be structurally stable.

We apply these ideas to several well-known systems
(e.g. , Lorenz and Rossler) as well as the construction of
a real set of chaotic synchronizing circuits.

The capability of synchronization is not obvious in

nonlinear systems. We derive the results for flows
(differential equations), but only a slight variation is
needed to use them for iterated maps. Consider an
autonomous n-dimensional dynamical system,

u-f(u).
Divide the system, arbitrarily, into two subsystems
[u -(v, w)],

hw = h hw+ h„hp, (5)

where h„and h„are the derivatives of h. Roughly, if h„
and h„are nearly constant in time, the solution of this
will follow the form

aw(r)- aw(0) — e +h„ I, , h„
h h

If h„&0,the difference between w and w' will level
off at some constant value. Although this is a simple
one-dimensional approximation, it turns out to be the
case for all systems we have investigated numerically,
even when the differences in parameters are rather large
(—10%-20%).

The phenomena of synchronization is reminiscent of
the "slaving principle" of Haken. ' Haken applied his
principle mostly to systems near singularities, like bifur-
cations, showing that the degrees of freedom of the sys-
tem for which the eigenvalue of the linear part of the

where D h is the Jacobian of the w subsystem vector
field with respect to w only. The behavior of Eq. (4) or
its matrix version depends on the Lyapunov exponents
of the w subsystem. We refer to these as sub-Lyapunov
exponents. We now have the following theorem: The
subsystems w and w' will synchronize only if the sub-

Lyapunov exponents are all negative.
The above theorem is a necessary, but not suScient,

condition for synchronization. It says nothing about the
set of "initial conditions" in w' which will synchronize
with w. We do not mention here any results regarding
these sets of points. They are under investigation and
will be reported else~here.

Taking a broader view, one can think of the v =(vl,
. . . , v~) components as being driving variables and the
w' (w' +i, . . . , w„') as being responding variables. We
take just such a view in our application to a chaotic elec-
tronic circuit, below.

It is natural to ask how the synchronization is affected

by differences in parameters between the w and w' sys-
tems which would be found in real applications. Let p
be a vector of the parameters of the y subsystem and p'
of the w' subsystem, so that h h(v, w, p), for example.
If the w subsystem were one dimensional, then for small
h, w and small hp p' —p,
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FIG. 1. The attractors for the Rossler drive system and the
(x'-z') response system and y(t) drive variable.
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vector field were & 0 determined the behavior of all oth-
er variables associated with negative eigenvalues. Just as
the Lyapunov exponent is the generalization of the Jaco-
bian for stability studies, our use of the sub-Lyapunov
exponents appears to be a generalization of concepts like
Haken's slaving.

We have tested these ideas on several models, includ-

ing several two-dimensional maps. Here we present the
results for the Rossler and Lorenz attractors which are
typical for all our systems.

We found that in the Rossler system it was possible to
use the y component to drive an (x', z') response Rossler
system and attain synchronization with the (x,z) com-
ponents of the driving system. Figure 1 shows three-
dimensional views of the drive and response systems for a
particular set of parameters in the chaotic regime. One
can see that although the response system starts far
away from the drive values it soon spirals into the same
type of attractor where it remains in synchronization
with the drive-system attractor. Table I shows the sub-

Lyapunov exponents" of various configurations of drive
and response for the Rossler system. Note that only the

y drive configuration will synchronize.
Table I also shows the sub-Lyapunov exponents for

the Lorenz system in the chaotic regime. In this case,
synchronization will occur for either x or y driving. Fig-
ure 2(a) shows a plot of time versus log of the differences
y' —

y and z' —z for the Lorenz attractor. The conver-
gences to synchronization are consistent with the values
in Table I.

Figure 2(b) shows the results for the same situation,
but with a slight change in the parameters of the re-
sponse system. As expected from the simple one-
dimensional argument above, the differences level off.
The systems partially synchronize in that y' and z' stay
within some neighborhood of y and z as they proceed
around the attractor.

We have investigated all the above phenomena in oth-
er models and have found similar results.

We used a modified version of an electronic chaotic
circuit by Newcomb and Sathyan to test these ideas on
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FIG. 2. The diA'erences y' —y and z' —z between the
response variables and their drive counterparts for the Lorenz
system for (a) when parameters are the same for both systems
and (b) when the parameters differ by 5%.

a real system. The drive circuit consists of an unstable
second-degree oscillator coupled to a hysteritic circuit
which continually shifts the center of the unstable focus
causing the system to be reinjected into the region near
one of two unstable focii. This keeps the motion bound-
ed and chaotic in certain parameter regimes. This is a
three-dimensional dynamical system. The response cir-
cuit was chosen to be a subcircuit in which the hysteritic
circuitry was mostly cut off, so the drive signal came
from a point just at the cutoff. The details of the circuits
and these experiments will be given elsewhere.

The equations of motion for the model of the drive cir-
cuit can be written in terms of the above oscillator-
hysterisis description (see Ref. 12 for a description of
modeling hysteresis). These must be transformed so that

System Drive Response Sub-Lyapunov exponents

Rossler X

a 0.2, b 0.2 y
c 9.0 z

Lorenz x
a lob 3 y
r 600 z

(y, z)
(x,z)
(x,y)
(y,z)
(x,z)
(x,y)

(+0.2, —8.89)
( —0.056, —8.81)

(+o.1, +o.1)
( —1.81, —1.86)
( —2.67, —9.99)

(+0.01os, —».01)

TABLE I. A listing of the various subsystems and driving
components for the Lorenz and Rossler systems and their sub-
Lyapunov exponents.
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FIG. 3. Oscilloscope traces of the response voltage x2' vs its
drive counterpart voltage x2 for (a) circuit parameters the
same and (b) circuit parameters different by 50%.

the drive signal, x3, is explicitly shown. This gives

x2+ yx~+c(ax3 px]),

X2 2X1 ~2X2 s

ex3 a ' I[1 —(ax3 —Px ~ ) ] (sx ~

—r+ ax3 Px ] )
(7)

63ax3 —px ~

—px2 —pyx ~

—pc(ax3 px ) )l

The equations for xt and x2 model the response circuit
as we11. For the chaotic regime the circuit settings dic-
tate that y 0.2, c=2.2, a 6.6, P=7.9, 62=0.01, to2

=10, s =1.667, and r =0.0. The sub-Lyapunov ex-
ponents can be calculated directly since the Jacobian for
Eqs. (7) is a constant in the x~ and xq variables. The ex-
ponents are —16.587 and —0.603, implying synchroni-
zation will occur.

The circuit itself runs in the realm of a few kHz. We
find that the response synchronizes with the drive within
about 2 ms which is consistent with the above sub-

Lyapunov exponents whose units are inverse mil-
liseconds. Figure 3 shows oscilloscope traces of the vari-
able x2 versus its response counterpart x2 for the syn-

chronizing circuits for two different parameter values.
The parameter varied was a resistor in the response cir-
cuit which eff'ectively changed a and p. In Fig. 3(b)
a=9.9 and P=10.4. The values for the driving circuit
remained unchanged. This shows changes (-50%) of
the circuit parameters effect synchronization greatly.
Even though the sub-Lyapunov exponents in the latter
cases both remain negative, synchronization is degraded.

At this point much more remains to be done (theoreti-
cally and experimentally) on synchronizing systems. All
of the systems studied so far have been low dimensional
with one positive Lyapunov exponent. Can synchroniza-
tion be accomplished in the case of two or more positive
exponents, but with only one drive'? Can one predict
which components will synchronize based on the struc-
ture of the center, unstable, and stable manifolds'?

Despite these and other open questions, we would like to
off'er some speculations.

The ability to design synchronizing systems in non-
linear and, especially, chaotic systems may open interest-
ing opportunities for applications of chaos to communi-
cations, exploiting the unique features of chaotic signals.
One now has the capability of having two remote sys-
tems with many internal signals behaving chaotically yet
still synchronized with each other through the one link-

ing drive signal.
Recent interesting results' ' suggest the possibility of

extending the synchronization concept to that of a meta-
phor for some neural processes. Freeman has suggested
that one should view the brain response as an attractor.
The process of synchronization can be viewed as a
response system that "knows" what state (attractor) to
go to when driven (stimulated) by a particular signal. It
would be interesting to see whether this dynamical view

could supplant the more "fixed-point" view of neural
nets ""
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