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We consider the effect of disorder on coherent tunneling of electrons through a double-barrier struc-

ture. When the disorder potential is treated in leading order we obtain a result with transparent physical

consequences. The effect of interface roughness on resonant tunneling is shown to depend qualitatively

on the location of the rough interface. Our results may help to explain the often observed asymmetry in

the current-voltage characteristics of double-barrier structures.
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The unusual electronic properties of double-barrier
resonant-tunneling structures' have lead to many propo-
sals for novel devices. While the fundamental charac-
teristics of such systems are well understood, a quanti-
tative understanding of the behavior of a particular de-
vice is rarely possible. For example, measured peak-to-
valley ratios for the region of negative differential resis-

tance (NDR) are consistently much smaller than those
calculated theoretically. It is widely recognized, espe-

cially for the case where the barriers are wide resulting
in narrow resonances, that the scattering of the tunneling
electrons will have to be included in the theoretical
description in order to describe experimental results.

Recently, studies of the effects of electron-phonon4 and

electron-electron interactions on resonant-tunneling
characteristics have been undertaken.

In this Letter we present a study of the effect of elastic
scattering on electrons which are tunneling through a
double-barrier structure. This type of scattering process
differs from the inelastic ones cited above in that the
electron's energy is conserved. The electron, ho~ever, is

able to exchange its kinetic energy perpendicular to the
barrier with its kinetic energy parallel to the barrier and

therefore uses tunneling channels that are more conduct-

ing. Furthermore, although it suffers a scattering event,
the electron's phase coherence is maintained, allowing it

to tunnel coherently across the whole structure. To de-

scribe elastic scattering, we use a scattering theory for-
mulation in which the double-barrier structure is treated
exactly and the disorder potential is treated perturbative-
ly. The formalism is combined with a simple model of
interface-roughness scattering which is generally be-
lieved to be the dominant source of elastic scattering.
When the scattering by the disorder is treated in leading
order, a simple result with a clear physical interpretation
is obtained.

We start with the Lippman-Schwinger equation:

% +(r) 9'8 (r)+„Id r'G+(r, r';E) VD(r')9'tt (r'), (I)

where 9'tt (r) is the wave function for an electron scat-
tered by the barrier alone, Vo(r) is the disorder poten-
tial, and G+(r, r';E) is the exact advanced Green's func-
tion. The barrier potential is dependent on z only, where

z is the direction perpendicular to the barrier, and will be
taken to be nonzero only for the region 0~ z ~ w, i.e.,
the barrier region.

So that G+(r, r';E) can be found perturbatively, we

use Dyson's equation

G+(r, r';E) Gtt (r, r';E)+ d r"Gtt (r, r";E)
x Vo(r )G+(r",r';E) .

(2)
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Here Gq+(r, r';E) is the advanced Green's function for
the double-barrier structure in the absence of any disor-
der. Our perturbative treatment of the disorder potential
takes advantage of the translational invariance which ex-
ists in the planes perpendicular to the double-barrier
structure (x-y planes) in the absence of disorder. Ex-
pressing the Green's function Ge+(r, r';E) in terms of ex-
act eigenstates of the disorder-free problem, it follows
that

~ d'kg
Ge+(r, r';E)=,exp[ik~ (r~ —r~)]

2tr) '
x G,+ (z, z ';E —eo(k ) ),

eo(k~) = it, k ~/2m*, m* is the eA'ective mass, r
=(r~, z), and G,+(z,z';E) is the Green's function for the
one-dimensional (1D) tunneling structure. The 1D
Green s function is most easily determined by integrating
its diAerential equation either numerically, or for simple
structures analytically, and using the appropriate bound-

ary conditions for the advanced Green's function.
By substituting Eq. (2) into Eq. (I) and by realizing

that the asymptotic form of the scattered wave function
for z & w is

%'+(r) =+exp(ik& r~)exp(ik, 'z)t(k&, kj ),

where k~ is the electron's momentum in the x-y plane, we are able to identify the interchannel transmission am-

plitudes as
—ik,' WW

t(k~, k~) =t (E)b~ ~ + dz ~ dz2%'tt(z ~,E,') TD(z ~, zt, k~, k~', E)+t.(z Ez, ) .
2gF' 0 0

2

In Eq. (5), A is the cross-sectional area of the system and

Tp(z), zz, k~, k~;E) =b(z) —zz)VD(z). kg —kJ )

(s)

t w

+ dz'G, +(z i, z';E —ep(pi)) VD(z). ki —pi) TD(z')z2, pi, ki,E) .
(2tr)' "o

O'L(z;E, ) is the solution of the 1D Schrodinger equation
describing an electron incident on the barrier from
the left-hand side with an energy E, =h k, /2m =E
—h k&/2m*, and for z & w, O'L(z E, ) =t(E, )e' ',
where t(E, ) is the 1D transmission amplitude. In the
derivation of (S) and (6), we have used the relation

G, (z, z ';E, ) = e* ik, OR (—z ';E, )/2E, (7)

for z & w and z' & z, where +R(z;E, ) is the 1D wave

function for an electron incident from the right and nor-

malized to equal t(E, )e ' *' on the left. This relation
for G,+(z,z';E, ) is derived by noticing that G, (z', z;E, ),
the retarded Green's function, has the same form as
9'tt (z';E.- ) for w & z' & z and z & w. Equation (7) then
results by matching the retarded Green's function to ei-
ther side of z and by using G+(z,z') =[G (z', z)1*.
The total transmission coefficient is finally given by
T=2, (k,'/k, ) It(k.',k. ) I'.

We model a rough interface which is located at zo by
taking a potential of the form Vtte(a/4 —Iz —zpI )
xgr8(r& —r&r), where Vtt is the band oA'set between
well material and barrier material. The disorder repre-
sents scattering from a set of terraces' where the barrier
material extends one monolayer, a/2, of the host materi-
al to larger z. e is the step function and 0(r~ —r~T) =1
on the Tth terrace and is zero otherwise. We have
chosen to work with this particular model for the sake of
definiteness and it should be noted that our qualitative
results are independent of the particular model used.
For present purposes it is adequate to take the terraces
to be identical and neglect correlations in the planar po-

(VD(z:q )) = V,e(a/4 —
I z —zo I )NrAr,

where NT is the number of terraces, AT is their area, and
) denotes an average over the terrace center posi-

tions. In principle, (VD(z:q&)) should be added to
Vtt(z); however, this is not necessary since a is small

compared to envelope-function wavelengths. In either
case we may take (VD(z:q&)) to be zero. The con-
figurational average for a product of two potentials is

given by

(VD(z:q~) VD (z';q&)) —, VttNra b(z —zp)

&b(z' —zp) I fT(q ) I'bq,

(8)

where fr(q~) is the Fourier transform of 8(r& —r&T)
and we have used the smallness of a to replace
e(a/4 —

I z —zo I ) by (a/2)b(z —zp). If there are
several rough interfaces, their contributions to the right-
hand side of Eq. (8) add.

The terms in ( I t(k~, k&) I ) may be placed in one-to-
one correspondence with terms in the disorder-averaged
perturbation theory for the conductivity and may be rep-
resented by the same diagrammatic shorthand. Many
interesting qualitative aspects of the influence of disorder
in the barrier may be understood by examining the lead-
ing order in the perturbation theory. For a single disor-
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dered interface the result is

T= Ir' '(E) I'+2Re[r' '*(E)r"'(E)j+ ' ' ' ' ' ' '
I f (k' —k ) ~'

where

oTa Vg &d p~
2 2 2

r (E) = 4'g(zo,'E )O'L(zo, E, )
hv,

' ' ' '
4 " (2~)

G,+(zo,zo,E —~o(p~) ) I fT(k~ —p~) I', (10)

0.2

0.02—

0.01—
0.1

crT is the areal density of terraces, and v, =6k, /m*.
The second term on the right-hand side of Eq. (9) repre-
sents electrons which are virtually scattered into the
transverse channel with perpendicular momentum p&
and are then scattered back into the original transverse
channel before being transmitted. The last term is the
contribution to T in which electrons are scattered be-
tween transverse channels before being transmitted and
can be thought of as a generalized Fermi "golden rule. "
This term can be placed in an especially simple form
when the terraces are small compared to I k~ —k~ I

In this limit fr(k~ —k&) AT and

(&)( z I B~T~Tg2D k + I +L(zo',E ) I'
(E,

4 2E,

X
s' k,'a I +R (zo,E)I'

so 2E,'

where A, T oTAT is the fraction of the interface covered
by terraces and g2o m /2zh is the two-dimensional
density of states.

We have plotted I t t' (E,) I using Eq. (11) for
scattering at each of the four interfaces of a double-

t

barrier structure. The structure consisted of two 30-A
barriers, 270 meV high separated by a 30-A well. One
bound level exists in the well at 142 meV with a width I
of -20 meV. An eff'ective mass of 0.067mo was used
~here mo is the electron rest mass. Realistic numbers
for the interface-roughness parameters are a -5.6 A and
AIR. 4X10 A . Figure I displays the results for the
electron incident perpendicular to the barriers (E E, )
and Fig. 2 for an incidence of 45' (E 2E, ). The distri-
bution of interchannel transmitted electrons will always
be strongly peaked around E' Ep, where Eo is the reso-
nance energy, independent of E, . This means that al-
though an incoming electron may not have an E, that is
near resonance, it can scatter into resonance, greatly
enhancing its probability of being transmitted.

For scattering at the left interface, labeled a,
I O'L (zo,E, ) I

—1, while I
4'z (zo,E,') I is very small

unless E,' is near the resonance, in which case
I%'R(zo, E,') I

—1 for the symmetric barrier considered
here. Once E-Eo or E)Eo, It ' (E, ) I tends to rise
gradually as the upper limits of the integral include more
exit channels. The feature which occurs for E, -Eo is
caused by I +L (zo,E, ) I being exactly 1 when the
reflection coeScient vanishes. For scattering at the right
interface, labeled d, I +L(zo,E, ) I «1, except for
IE, —E, I -r. In this case it goes to l. On the other
hand, I

O' R(zo,E,') I
has no strong energy dependence at

resonance. Therefore, I t ' (E, ) I will have a strong
peak for E, -EO in both Figs. 1 and 2. The most
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FIG. 1. The leading-order contribution to the transmission
coefficient of a double-barrier structure in which electrons are
elastically scattered between transverse channels before being
transmitted. The electrons are incident with no transverse
momentum and so can only scatter to lower-energy E-' states.
The curve representing scattering at the left interface is labeled
a, at the interface in the well on the left b, at the right inter-
face in the well e, and for the far-right interface d. Notice that
curves b and c are plotted on a different axis from curves a and
d and they give a contribution that is nearly an order of magni-
tude greater. The resonance energy Eo is 142 meV and has a
width I of 20 meV.
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FIG. 2. As Fig. 1 but now the electrons are incident with
the same amount of kinetic energy both perpendicular and
parallel to the barriers. Consequently, the electrons are now
able to scatter to higher-energy E,' states.
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eff'ective disorder for interchannel scattering occurs at
the interfaces surrounding the well, labeled b for the left
interface and labeled c for the right one, since both

i +L(zo,E, ) i and i%'n(z o'E,')
i are large when E, and

E,' are near Eo. For normal incidence we see that

i t ' (E, ) i rises extremely rapidly as E, =En is ap-
proached since resonant exit channels are becoming
available just as the resonance develops for the incident
channel. For 45' incidence, i t ' (E, ) i switches on
when E, -Eo/2 as it is now possible for the electron to
exit resonantly by increasing E, .

In conclusion, it is clear from Figs. 1 and 2 that this

type of elastic scattering will lead to an asymmetry in

the voltage-current characteristics of resonant-tunneling
diodes since interfaces in which GaAs is grown on

Al„Gai—„Asare much rougher than interfaces in which

Al„Gal—„Asis grown on GaAs. Thus in Figs. 1 and 2
curves a and c correspond to electrons incident towards
the substrate and curves b and d to electrons incident in

the opposite direction. " Furthermore, for electrons in-

cident with energies above the resonance, scattering oA'

the a interface increases in relative importance. This
eAect will be even more pronounced in structures with

wider barriers, i.e., narrower resonances. Indeed, scat-
tering off this interface may control the peak-to-valley
ratio in the NDR region.

The current could also be calculated by integrating the
product of T and the supply function up to the Fermi en-

ergy. The supply function takes account of the density
of states in the contact regions and allows current to flow

against the electric field. This will be undertaken in a
future publication, but it is expected that the asym-
metries which are seen here in T will also be observable
in the current. Moreover, introducing structure in the
transverse density of states by applying a magnetic field

parallel to the current will allow the rate of elastic
scattering to be studied experimentally in some de-

tail. ' ' For narrower resonances with longer tunneling
times or rougher interfaces, interchannel scattering will

be more dominant. To study this regime it will be neces-

sary to carry out the perturbation expansion to higher
order. Work in this direction is proceeding.

The authors acknowledge useful conversations with S.
Bending and R. Phillips. One of us (A.H. M.) would like
to thank the Max-Planck-Institut fur Festkorperfor-
schung for their generous hospitality and J.L. acknowl-
edges the Science and Engineering Research Council of
Great Britain and The Royal Society for financial sup-
port. This work was supported in part by the National
Science Foundation under Grant No. DMR-880238.

Note added. —A recent paper by Fertig and Das Sar-
ma' that appeared after this Letter was submitted for
publication also treats elastic scattering in a double-
barrier structure. However, these authors use a tight-
binding formalism to calculate T and consider scattering
in the well region.
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