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Modulational Instability of Copropagating Frequen-
cies for Normal Dispersion

In a recent Letter, ' Agrawal has shown that nonlinear
optical propagation can exhibit modulational instability
(MI) in the normal dispersion region. This is significant
in that, although there was known for some time to be
MI in the anomalous dispersion region, the normal re-
gion was thought to be stable. Agrawal mathematically
shows that cross-phase modulation of two distinct co-
propagating frequencies, when described by two in-

coherently coupled equations (ICE's), can yield MI in

the normal dispersion region. For these ICE's he shows
that even in the realistic case of the two frequencies trav-
eling at diff'erent group velocities MI is present. As the
group-velocity mismatch 8= vg2' —v~i' increases it was
shown that the peak gain increases and the frequency
which exhibits maximum gain varies according to
co,„s„„=B/P,where P=d k/dto is the disPersion. In
the examples that Agrawal considered it was found coin-
cidentally, and left unexplained, that to,„s„„was ap-
proximately equal to the frequency difference between
the two copropagating waves, h, co=co2 —coi. That is,
each wave develops a sideband which is (nearly) degen-
erate with the copropagating wave.

In this Comment I show that, although Agrawal's
analysis of the ICE's is entirely correct, these equations
have implicit in them assumptions which are strongly
violated by the solutions he finds. To correctly solve the
problem one must integrate the nonlinear Schrodinger
equation (NLSE). Numerical integrations of the NLSE
show that the actual gain is greatly reduced from that
calculated by Agrawal.

The analysis of two copropagating frequencies in a
nonlinear medium is approached by substituting the sum
of the two waves A; =expj —i(co;t —k;z)) in the NLSE
(modified for higher-order dispersion, if necessary),
and collecting similar frequency terms. One obtains
Agrawal's ICE's [Eq. (1) of Ref. I] with a coherent cou-
pling term —

yAJ A3-J exp(+'i(d tot —hkz)j on the
right-hand side of the ICE's for j= 1 and 2, respectively.
If the bandwidths of Ai and A2 (which include side-
bands at the modulation frequency) are «b, co, then one
expects that these coherent terms will not be phase
matched and one might argue that they can be ignored.
However, in the examples which Agrawal discusses, the
modulation frequency approaches h, co so that the band-
width of the A s are -h, co, and the coherent terms will

have a component which is certainly phase matched, and
cannot be ignored. In other words, optical nonlinear
propagation is correctly described by the NLSE, and, by
neglecting coherent coupling terms, the NLSE may be
reduced to Agrawal's ICE's. For the cases Agrawal ex-
amines this reduction is unjustified.

The true solution of this problem is found by a numer-
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FIG. 1. Calculated growth of a weak perturbation at 0.5
THz on two strong (100 W) waves separated by 2.6 THz. The
solid curve is the integration of the NLSE (which includes all
coherent coupling terms), and the dashed curve is for the ICE's
of Ref. 1.
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ical integration of the NLSE, where one uses the sum of
two strong cw frequencies and a weak modulational per-
turbation as the input field. In this way all coherent cou-
pling between the waves is included. An example of such
a calculation is shown in Fig. I (solid curve), where the
growth of the spectral intensity as a perturbation fre-
quency of 0.5 THz is plotted versus the propagation dis-
tance. To facilitate comparison, this calculation uses
Agrawal's parameters: y =0.015 m '/W, p =0.06
ps /m is assumed constant, each strong wave has a power
of 100 W, and the frequency difference between them is
2.6 THz (b= 1 ps/m). This result is compared with the
numerical integration of Agrawal's ICE's for the same
initial conditions (dashed curve). One sees that the solu-
tion of the NLSE is oscillatory and does not exhibit the
gain (0.7 m ') present in Agrawal's solution. This type
of oscillatory behavior is typical of that observed over the
range of relevant perturbation frequencies. Varying the
powers and frequency difference of the strong waves
yields similar results. Therefore, one sees that the
coherent coupling terms have a significant effect, in gen-
eral, and thus the ICE approach will lead to unphysical
results.
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