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Can the Thermodynamic Properties of a Solid Be Mapped onto Those of a Liquid?
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A new approximation to the density-functional theory of classical nonuniform systems is proposed and
worked out for the case of the hard-sphere solid. The theory satisfies all the formal properties of the free
energy and requires only the direct correlation function of the uniform system as input. The agreement
with the computer simulations of the fcc hard-sphere solid is excellent: The resulting free energies, pres-
sures, and fluid-solid coexistence data are reproduced to within the error bars of the simulations. The
theory also predicts stable bcc and sc phases which could facilitate the final nucleation into the equilibri-
um fcc phase.

PACS numbers: 64. 10.+h, 05.70.Fh, 64.70.Dv

The first-principles description of nonuniform equilib-
rium phases and phase coexistences remains one of the
basic problems of equilibrium statistical mechanics. In-
creasing evidence has been gained in recent years' that it
is possible to describe nonuniform phases by using only
our knowledge about the uniform phase as input. If, for
concreteness, we consider the liquid-solid coexistence,
then it may be quite surprising to hear that the highly
organized solid (the nonuniform system) can be de-
scribed in terms of the liquid (the uniform system). This
is nevertheless the idea which was put forward some
years ago by Ramakrishnan and Yussouff. 2 These au-
thors did, however, compute the properties of the solid as
a perturbation of those of the coexisting liquid. The va-

lidity of this latter step was felt to be a problem since the
very beginning while, now, the recent results of Curtin
seem to call it definitively into question. Meanwhile,
several authors have used the same basic idea to for-
mulate nonperturbative theories which bypass this criti-

cism. The present investigation is concerned with the
formulation of such a nonperturbative theory which

pushes to its extreme consequences the original idea of
describing the thermodynamic properties of the solid in

terms of those of a liquid. This theory satisfies all formal
properties and yields amazingly accurate results when

tested for the hard-sphere solid.
The (Helmholtz) free energy of the solid, F[p], is a

functional of the local density of the solid, p(r), and the
usual density-functional notation and relations will

therefore be used throughout here. In general, F can be
written as the sum of two terms, F=F;d+F,„, an
ideal-gas term, F;d, and an excess term, F,„, due to the
interactions. For F;d we have

PFd[p] drp(r) [ln[X3p(r)] —I],

where P = I/ks T is the inverse temperature and A. is the
thermal wavelength. Whereas Eq. (1) is exact, we pro-
pose here for F,„ the following approximation:'0

PF,„[p]= — dr„dr' dA, „dX'p(r)p(r') c(
~
r —r'~;p[k'p]), (2)

where c(
~
r ~;p) is the direct correlation function (DCF)

of the liquid evaluated at a uniform density p which is

used here to "effectively" describe the solid of local den-

sity p(r). Notice that Eq. (2) differs from the exact ex-

pression of F,„only in that the DCF of the solid has
been replaced by the DCF of an effective liquid of densi-

ty p. The approximation underlying Eq. (2) is thus
based on the idea that it is possible to map the (density
averaged) DCF of the solid [which is all that matters for
Eq. (2)] onto the DCF of some equivalent liquid which

we call the effective liquid resulting from this "structur-
al" mapping. In order to uniquely specify this mapping,
we will assume moreover that the effective liquid which

optimizes this mapping is the one which at the same time
as it maps the structure, also maps some intensive ther-
modynamic property of the solid, say its excess free ener-

gy per particle, p,„[p]=F,„[p]/N, onto that of the

effective liquid, say p„(p). This "thermodynamic" map-
ping is thus explicitly defined by the equation, p,„[p]

p,„(p), where p is now the effective liquid which repro-
duces both the averaged DCF of the solid and its excess
free energy per particle. Using then the known density-
functional expressions one immediately obtains the
following relations defining the effective density p,
viewed as a functional of p(r), p =p[p]:

p[p] =
z dr& dr'p(r)p(r')w(~ r —r'~;[p]),

p V4 (3)

where ps V =fdr p(r) is the number of particles, ps be-

ing the average solid density, and V the volume. Notice
from Eq. (3) that p has the formal appearance of a dou-

bly weighted solid density with a weighting function,
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~(
I
r I; [p] ), explicitly defined as '

fod~fod~'c( I
r

I
'p[~'p] )

fod~fod~'f«'c( I
r'

I '~'p[p] )
' (4)

so that the solution to Eqs. (3) and (4) defines p[p] and

Eqs. (1) and (2) define then the present "generalized
efl'ective liquid approximation" (GELA) to the free en-

ergy of the solid. The previously introduced self-con-
sistent effective liquid approximation (SCELA) difl'ers

from Eqs. (1)-(4) in that pb, 'p] appearing in Eqs. (2)
and (4) was approximated as A, 'p[p]. Although it was

not realized at that time, this diA'erence is quite crucial.
Indeed, because Eq. (2) has now the same functional
dependence on p(r) as the exact F,„[p] it follows that all
the functional relations between F,„and the DCF are
preserved by Eq. (2). In particular, it follows from Eq.
(2) that we have the property (n ~ 2)

b "pF,„[p] b" c( I r~
—r2 I;pip] )

8p(r~ ) Bp(r„) bp(r3) &p(r, )

which for n =2 is nothing but the diAerential form of Eq.
(2) and for n & 2 defines the higher-order DCF of the
solid in terms of the ordinary DCF of the efl'ective liquid.
Notice that Eq. (5) holds as such, not only in the uni-

form limit as assumed in some alternative theories. It
appears thus that the GELA, defined by Eqs. (1)-(4), is

the most fully self-consistent realization possible of the
very idea of mapping the (excess) thermodynamic prop-
erties of the solid onto those of an (effective) liquid. In

this respect it may be worthwhile to observe here some of
the alternative theories, based on postulating the form
of Eq. (3) and requiring Eq. (5) to hold in the uniform
limit, have introduced a normalized weighting func-
tion, whereas it is seen here from Eq. (4) that
w(I rI;lp]) is normalized only in the uniform limit, ''

which is all that is physically required. The price we

have to pay for this extreme generality of the GELA is

that, because of the simultaneous appearance of p[p] and
p[X'p], Eqs. (3) and (4) are more difftcult to solve here
than in the SCELA.

Since the GELA has very satisfactory formal proper-
ties we have tested it for its quantitative predictions in

the particular case of the hard-sphere (HS) solid, a typi-
cal testing ground within this context. The HS im-

plementation of the theory is very simple: For the DCF
of the fluid phase we have used the well-known analytic
Percus-Yevick (PY) expression ' while the density of
the solid has been parametrized in terms of Gaussian
profiles:

' 3/2

p(r) = — +exp[ —a(r —R) ],
R

with [R] denoting here the Bravais lattice vectors of the
fcc crystal. In Eq. (6), the inverse width, a, is seen to
play the role of the order parameter. For large positive
values of a, Eq. (6) describes strongly localized particles,
which gradually delocalize as a decreases, while Eq. (6)
tends finally to a uniform fiuid density for vanishing a.
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TABLE I. The fluid-fcc-solid coexistence data as computed
from the nonperturbative density-functional theories of hard-
sphere freezing and compared to the Monte Carlo (MC) simu-

lation results. Here g 6 za'p is the packing fraction of the
coexisting solid (S) and fluid (F) phases of hard spheres of di-

ameter a and density p. Further, hp =pz —pF* is the density
change (p per'), P* pPcJ is the reduced pressure, hs is

the change in entropy per particle, and L is the Lindemann pa-
rameter (root-mean-square displacement divided by the near-
est-neighbor distance). WDA denotes the weighted-density
approximation and MWDA denotes the modified weighted-
density approximation.
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FIG. 1. The complete phase diagram of hard spheres in the
pressure (P* pPa') vs density (rt =pa'z/6) plane, consisting
of a fluid branch, a solid branch, and a tie line separating each
branch into a stable and a metastable portion. The circles cor-
respond to the simulation results (Ref. 14), the lines to the
theory [GELA, ELA (Ref. 3), and WDA (Ref. 5)]. On the
scale of the figure the pressures obtained from the SCELA
(Ref. 7) [MWDA (Ref. 6)] cannot be distinguished from those
of the GELA (WDA), although the tie lines could (see Table
1).

MC"
GELA b

SCELA'
WDA '
MWDA'
Er A'

0.494
0.495
0.508
0.480
0.476
0.520

0.545
0.545
0.560
0.547
0.542
0.567

0.097 11.7
0.095 11.9
0.099 13.3
0.129 10.4
0.126 10.1

0.090 16.1

'From Hoover and Ree (Ref. 14).
From this work.

'From Baus (Ref. 7) and this work.
From Curtin and Ashcroft (Ref. 5).

'From Denton and Ashcroft (Ref. 6).
From Baus and Colot (Ref. 3).

1.16
1.15
1.27
1.41
1.35
1.36

0.126
0.100
0.084
0.093
0.097
0.074
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The spatial integrals in Eqs. (2) and (3) can be evalu-

ated analytically, just as in the original effective liquid
approximation (ELA). ' We then solve Eqs. (3) and
(4) for p =p(a, ps), which now becomes a function of a
and of the average solid density p~. The result yields a
p(a, pz) which is a rapidly decreasing function of a. As
a consequence all the stable solids, corresponding to the
a value for which the free energy is minimum, can be
described by values of p which are sufficiently low for the
PY approximation to remain essentially exact. The re-
sulting free energy and pressure of the perfect fcc HS
crystal are within a few percent of the simulation re-
sults' (see Fig. I). The fcc solid first stabilizes at
ri =0.465, remains metastable relative to the fluid up to

g =0.515, above which it becomes the thermodynamical-
ly favored phase (at constant density). Here ri is the re-
duced density, or packing fraction, appropriate to the PY
description: ri= —,

' za pq for HS of diameter o. The
fluid-solid coexistence can then be located accurately by
using for the HS fluid free energy the virtually exact
Carnahan-Starling approximation. ' The results are
displayed in Table I where it is seen that the GELA pre-
dictions are within the error bars of the simulation re-
sults.

One exception to this rather amazing accuracy of the
GELA is the Lindemann parameter which is too low.
This can be understood by observing that this quantity is
the most model-dependent one, so that the Gaussian-
profile approximation of Eq. (6) could be responsible for
this disagreement. There remains little doubt, however,
that the possibility to map the solid onto some effective
liquid, as described by the GELA, is a real one. It is also
of interest to observe (see Table I) that the SCELA, al-
though not sharing the property of Eq. (5), constitutes a
good approximation to the GELA. As a topic for further
research' we have also investigated the stability, within
the GELA, of the other cubic HS crystals. We have
found that the fcc phase is the most stable one, followed

by the bcc phase, '6 the simple cubic (sc) phase, and the
fluid phase, in this order. In each case, the free-energy
gap separating the (meta)stable solid from the fluid

phase increases, as does also the corresponding a value of

the solid, according to the sc-bcc-fcc sequence. This
then suggests the interesting possibility that these meta-
stable HS solids could play some role, as intermediate
phases, in the final nucleation of the equilibrium fcc
phase.
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